• Title/Summary/Keyword: Segway Mobile Robot

Search Result 8, Processing Time 0.016 seconds

Design of Simple-Structured Fuzzy Logic Systems for Segway-Type Mobile Robot

  • Yoo, Hyun-Ho;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.232-239
    • /
    • 2015
  • Studies on the control of the inverted pendulum type system have been widely reported. This is because it is a typical complex nonlinear system and may be a good model for verifying the performance of a proposed control system. In this paper, we propose the design of some fuzzy logic control (FLC) systems for controlling a Segway-type mobile robot, which is an inverted pendulum type system. We first derive a dynamic model of the Segway-type mobile robot and then analyze it in detail. Next, we propose the design of some FLC systems that have good performance for the control of any nonlinear system. Then, we design two conventional FLC systems for the position and balance control of the Segway-type mobile robot, and we demonstrate their usefulness through simulations. Next, we point out the possibility of simplifying the design process and reducing the computational complexity,, which results from the skew symmetric property of the fuzzy control rule tables. Finally, we design two other FLC systems for position and balance control of the Segway-type mobile robot. These systems have only one input variable in the FLC systems. Furthermore, we observe that they offer similar control performance to that of the conventional two-input FLC systems.

Design of Fuzzy Logic Control System for Segway Type Mobile Robots

  • Kwak, Sangfeel;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • Studies on the control of inverted pendulum type systems have been widely reported. This is because this type of system is a typical complex nonlinear system and may be a good model to verify the performance of a proposed control system. In this paper, we propose the design of two fuzzy logic control systems for the control of a Segway mobile robot which is an inverted pendulum type system. We first introduce a dynamic model of the Segway mobile robot and then analyze the system. We then propose the design of the fuzzy logic control system, which shows good performance for the control of any nonlinear system. In this paper, we here design two fuzzy logic control systems for the position and balance control of the Segway mobile robot. We demonstrate their usefulness through simulation examples. We also note the possibility of simplifying the design process and reducing the computational complexity. This possibility is the result of the skew symmetric property of the fuzzy rule tables of the system.

Reasonable Hardware Design Methods for 2-Wheeled Mobile Robots : Based on Segway Type Mobile Robots (2륜 이동로봇의 합리적인 하드웨어 설계 노하우 : 세그웨이를 중심으로)

  • Joh, Jung-Woo;Park, Gwi-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.109-111
    • /
    • 2009
  • In this paper, we discuss how to design 2-wheeled mobile robot hard wares as reasonable and practical as possible. A segway type mobile robot consists of 2 wheels only, placed in parallel rather than horizon. 2-wheeled mobile robots make you overcome high cost and time consuming maintenance procedures of the robot by reducing the number of robot hardwares. The most challenging thing in a 2-wheeled mobile robot that has many more valid virtues than the traditional mobile robots is to make it balance itself whenever it stands still or goes forward. But balancing itself is not an easy matter and there are many researches and experiments on this issue. When researchers test theories on 2-wheeled mobile robots to improve its self balancing performance, they should consider how to design hard wares of that mobile robot. No matter how great those new theories are, if a testbed for those theories is not suitable, performance output would be poor and meaningless. In this point of view, to design a proper 2-wheeled mobile robot as a testbed is a very important issue with development of new theories. So we define 4 guide lines to design segway type mobile robots reasonably; about motor, battery, and MCU selection and shock-proof design with robust motor setting.

  • PDF

A Control of Mobile Inverted Pendulum using Single Accelerometer (단일 가속도 센서에 의한 모바일 역진자 제어)

  • Ha, Hyun-Uk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.440-445
    • /
    • 2010
  • This paper proposes a single accelerometer sensor control algorithm to mobile inverted pendulum, generally called 'Segway', and evaluates the performance of this system comparing to the conventional ones. The commercialized 'Prototype Segway-PT' is initially considered as a next-generation transport vehicle. However, this robot is operated by three gyroscopes and two accelerometers to control the posture and speed, and it requires the complex signal processing for fusing the two sets of data. As the result of this, the growth rate of market size of 'Segway' is slow because of its high price mainly. In this paper, the mobile inverted pendulum is operated by a single accelerometer to simplify the control system to lower the price. Low pass filter is one of the good sensors to reducing the variation of an accelerometer, but it has time delay. This time delay disturbs real-time mobile inverted pendulum control. Like this, other various algorithms are used for this system, but each one has its own weak point. So this paper proposes a new filtering method, median filter and EKF. Median filter is used to image processing to reject impulse elements like salt and pepper noise. As the major performance evaluation parameter for the accelerometer, the high-frequency to low frequency ratio from FFT (Fast Fourier Transform) is used. Effectiveness of the proposed algorithms has been verified through the real experiments and the results are demonstrated.

A study on the Posture control of a two-wheeled mobile robot (양바퀴 이동로봇의 자세제어에 대한 연구)

  • Joo, Jin-Hwa
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.587-593
    • /
    • 2017
  • In this paper, we propose a method to solve the difficulties in constructing an environment capable of practical training on the theoretical contents of robot control field. We make a two-wheeled mobile robot with Segway structure using LEGO block. In order to demonstrate the validity of using the developed robot as a practical application of advanced control theory of robotics education such as dynamic system and nonlinear system, the robot takes a stable posture while balancing the change of gravity during running. The results of the experiment are shown. By presenting the results, the robots made using the LEGO block are used for practical training of advanced control theory of robotics. It can be used as a tool.

Optimal ARS Control of an Inverted Pendulum Robot for Climbing Ability Improvement (등반능력향상을 위한 이륜 역진자 로봇의 최적 ARS 제어)

  • Kwon, Young-Kuk;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.108-117
    • /
    • 2011
  • This paper proposes an optimal ARS control of a two-wheel mobile inverted pendulum robot. Conventional researches are highly concentrated on the robust control of a mobile inverted pendulum on the flat ground, $i.e.$, mostly focus on the compensation of gyroscope signals. This newly proposed algorithm deals with a climbing control of a slanted surface based on the dynamic modeling using the conventional structure. During the climbing control of the robot, unexpected disturbance forces are essentially caused by the irregular contact force which comes from the irregular contact angle between the wheel and the terrain. The disturbances have effects on the optimal posture of the mobile robot to compensate the slanted angle. Therefore the dynamics equations through physical interpretation are derived for the selection of optimum climbing posture through ARS. Also using the ultrasonic sensor the slope information is obtained to compensate for the force of gravity. The control inputs are dynamically adjusted to climb up the slanted surface effectively. The proposed algorithm is demonstrated through the real experiments.

LQ control by linear model of Inverted Pendulum Robot for Robust Human Tracking (도립형 로봇의 강건한 인간추적을 위한 선형화 모델기반 LQ제어)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • This paper presents the system modeling, analysis, and controller design and implementation with a inverted pendulum system in order to test Linear Quadratic control based robust algorithm for inverted pendulum robot. The balancing of an inverted pendulum robot by moving pendulum robot like as 'segway' along a horizontal track is a classic problem in the area of control. This paper will describe two methods to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state. The results of real experiment show that the proposed control system has superior performance for following a reference command at certain initial conditions.

Neural Network PID Controller for Angle and Speed Control of Two Wheeled Inverted Pendulum Robot (이륜 역진자 로봇의 각도 및 속도 제어를 위한 신경회로망 PID 제어기)

  • Kim, Young-Doo;An, Tae-Hee;Jung, Gun-Oo;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1871-1880
    • /
    • 2011
  • In this paper, a controller for two wheeled inverted pendulum robot, i.e., Segway type robot that is a convenient and easily handled vehicle is designed to have more stable balancing and faster velocity control compared to the conventional method. First, a widely used PID control structure is applied to the two wheeled inverted pendulum robot and proper PID control gains for some specified weights of users are obtained to get accurate balancing and velocity control by use of experimental trial-and-error method. Next, neural network is employed to generate appropriate PID control gains for arbitrarily selected weight. Here the PID gains based on the trial-and-error method are used as training data. Simulation study has been carried out to find that the performance of the designed controller using the neural network is more excellent than the conventional PID controller in terms of faster balancing and velocity control.