• Title/Summary/Keyword: Segmentation model

Search Result 1,055, Processing Time 0.03 seconds

Real-time semantic segmentation of gastric intestinal metaplasia using a deep learning approach

  • Vitchaya Siripoppohn;Rapat Pittayanon;Kasenee Tiankanon;Natee Faknak;Anapat Sanpavat;Naruemon Klaikaew;Peerapon Vateekul;Rungsun Rerknimitr
    • Clinical Endoscopy
    • /
    • v.55 no.3
    • /
    • pp.390-400
    • /
    • 2022
  • Background/Aims: Previous artificial intelligence (AI) models attempting to segment gastric intestinal metaplasia (GIM) areas have failed to be deployed in real-time endoscopy due to their slow inference speeds. Here, we propose a new GIM segmentation AI model with inference speeds faster than 25 frames per second that maintains a high level of accuracy. Methods: Investigators from Chulalongkorn University obtained 802 histological-proven GIM images for AI model training. Four strategies were proposed to improve the model accuracy. First, transfer learning was employed to the public colon datasets. Second, an image preprocessing technique contrast-limited adaptive histogram equalization was employed to produce clearer GIM areas. Third, data augmentation was applied for a more robust model. Lastly, the bilateral segmentation network model was applied to segment GIM areas in real time. The results were analyzed using different validity values. Results: From the internal test, our AI model achieved an inference speed of 31.53 frames per second. GIM detection showed sensitivity, specificity, positive predictive, negative predictive, accuracy, and mean intersection over union in GIM segmentation values of 93%, 80%, 82%, 92%, 87%, and 57%, respectively. Conclusions: The bilateral segmentation network combined with transfer learning, contrast-limited adaptive histogram equalization, and data augmentation can provide high sensitivity and good accuracy for GIM detection and segmentation.

Implementation of 2D Active Shape Model-based Segmentation on Hippocampus

  • Izmantoko, Yonny S.;Yoon, Ho-Sung;Adiya, Enkhbolor;Mun, Chi-Woong;Huh, Young;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Hippocampus is an important part of brain which is related with early memory storage and spatial navigation. By observing the anatomy of hippocampus, some brain diseases effecting human memory (e.g. Alzheimer, schizophrenia, etc.) can be diagnosed and predicted earlier. The diagnosis process is highly related with hippocampus segmentation. In this paper, hippocampus segmentation using Active Shape Model, which not only works based on image intensity, but also by using prior knowledge of hippocampus shape and intensity from the training images, is proposed. The results show that ASM is applicable in segmenting hippocampus from whole brain MR image. It also shows that adding more images in the training set results in better accuracy of hippocampus segmentation.

Customer Segmentation Model for Internet Banking using Self-organizing Neural Networks and Hierarchical Gustering Method (자기조직화 신경망과 계층적 군집화 기법(SONN-HC)을 이용한 인터넷 뱅킹의 고객세분화 모형구축)

  • Shin, Taek-Soo;Hong, Tae-Ho
    • Asia pacific journal of information systems
    • /
    • v.16 no.3
    • /
    • pp.49-65
    • /
    • 2006
  • This study proposes a model for customer segmentation using the psychological characteristics of Internet banking customers. The model was developed through two phased clustering method, called SONN-HC by integrating self-organizing neural networks (SONN) and hierarchical clustering (HC) method. We applied the SONN-HC method to internet banking customer segmentation and performed an empirical analysis with 845 cases. The results of our empirical analysis show the psychological characteristics of Internet banking customers have significant differences among four clusters of the customers created by SONN-HC. From these results, we found that the psychological characteristics of Internet banking customers had an important role of planning a strategy for customer segmentation in a financial institution.

An Improved Level Set Method to Image Segmentation Based on Saliency

  • Wang, Yan;Xu, Xianfa
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.7-21
    • /
    • 2019
  • In order to improve the edge segmentation effect of the level set image segmentation and avoid the influence of the initial contour on the level set method, a saliency level set image segmentation model based on local Renyi entropy is proposed. Firstly, the saliency map of the original image is extracted by using saliency detection algorithm. And the outline of the saliency map can be used to initialize the level set. Secondly, the local energy and edge energy of the image are obtained by using local Renyi entropy and Canny operator respectively. At the same time, new adaptive weight coefficient and boundary indication function are constructed. Finally, the local binary fitting energy model (LBF) as an external energy term is introduced. In this paper, the contrast experiments are implemented in different image database. The robustness of the proposed model for segmentation of images with intensity inhomogeneity and complicated edges is verified.

Three-dimensional Active Shape Model for Object Segmentation (관심 객체 분할을 위한 삼차원 능동모양모델 기법)

  • Lim, Seong-Jae;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.335-336
    • /
    • 2006
  • In this paper, we propose an active shape image segmentation method for three-dimensional(3-D) medical images using a generation method of the 3-D shape model. The proposed method generates the shape model using a distance transform and a tetrahedron method for landmarking. After generating the 3-D model, we extend the training and segmentation processes of 2-D active shape model(ASM) and improve the searching process. The proposed method provides comparative results to 2-D ASM, region-based or contour-based methods. Experimental results demonstrate that this algorithm is effective for a semi-automatic segmentation method of 3-D medical images.

  • PDF

MRU-Net: A remote sensing image segmentation network for enhanced edge contour Detection

  • Jing Han;Weiyu Wang;Yuqi Lin;Xueqiang LYU
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3364-3382
    • /
    • 2023
  • Remote sensing image segmentation plays an important role in realizing intelligent city construction. The current mainstream segmentation networks effectively improve the segmentation effect of remote sensing images by deeply mining the rich texture and semantic features of images. But there are still some problems such as rough results of small target region segmentation and poor edge contour segmentation. To overcome these three challenges, we propose an improved semantic segmentation model, referred to as MRU-Net, which adopts the U-Net architecture as its backbone. Firstly, the convolutional layer is replaced by BasicBlock structure in U-Net network to extract features, then the activation function is replaced to reduce the computational load of model in the network. Secondly, a hybrid multi-scale recognition module is added in the encoder to improve the accuracy of image segmentation of small targets and edge parts. Finally, test on Massachusetts Buildings Dataset and WHU Dataset the experimental results show that compared with the original network the ACC, mIoU and F1 value are improved, and the imposed network shows good robustness and portability in different datasets.

Deep learning framework for bovine iris segmentation

  • Heemoon Yoon;Mira Park;Hayoung Lee;Jisoon An;Taehyun Lee;Sang-Hee Lee
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.167-177
    • /
    • 2024
  • Iris segmentation is an initial step for identifying the biometrics of animals when establishing a traceability system for livestock. In this study, we propose a deep learning framework for pixel-wise segmentation of bovine iris with a minimized use of annotation labels utilizing the BovineAAEyes80 public dataset. The proposed image segmentation framework encompasses data collection, data preparation, data augmentation selection, training of 15 deep neural network (DNN) models with varying encoder backbones and segmentation decoder DNNs, and evaluation of the models using multiple metrics and graphical segmentation results. This framework aims to provide comprehensive and in-depth information on each model's training and testing outcomes to optimize bovine iris segmentation performance. In the experiment, U-Net with a VGG16 backbone was identified as the optimal combination of encoder and decoder models for the dataset, achieving an accuracy and dice coefficient score of 99.50% and 98.35%, respectively. Notably, the selected model accurately segmented even corrupted images without proper annotation data. This study contributes to the advancement of iris segmentation and the establishment of a reliable DNN training framework.

Smart Phone Road Signs Recognition Model Using Image Segmentation Algorithm

  • Huang, Ying;Song, Jeong-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.887-890
    • /
    • 2012
  • Image recognition is one of the most important research directions of pattern recognition. Image based road automatic identification technology is widely used in current society, the intelligence has become the trend of the times. This paper studied the image segmentation algorithm theory and its application in road signs recognition system. With the help of image processing technique, respectively, on road signs automatic recognition algorithm of three main parts, namely, image segmentation, character segmentation, image and character recognition, made a systematic study and algorithm. The experimental results show that: the image segmentation algorithm to establish road signs recognition model, can make effective use of smart phone system and application.

  • PDF

Lung Segmentation Considering Global and Local Properties in Chest X-ray Images (흉부 X선 영상에서의 전역 및 지역 특성을 고려한 폐 영역 분할 연구)

  • Jeon, Woong-Gi;Kim, Tae-Yun;Kim, Sung Jun;Choi, Heung-Kuk;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.829-840
    • /
    • 2013
  • In this paper, we propose a new lung segmentation method for chest x-ray images which can take both global and local properties into account. Firstly, the initial lung segmentation is computed by applying the active shape model (ASM) which keeps the shape of deformable model from the pre-learned model and searches the image boundaries. At the second segmentation stage, we also applied the localizing region-based active contour model (LRACM) for correcting various regional errors in the initial segmentation. Finally, to measure the similarities, we calculated the Dice coefficient of the segmented area using each semiautomatic method with the result of the manually segmented area by a radiologist. The comparison experiments were performed using 5 lung x-ray images. In our experiment, the Dice coefficient with manually segmented area was $95.33%{\pm}0.93%$ for the proposed method. Effective segmentation methods will be essential for the development of computer-aided diagnosis systems for a more accurate early diagnosis and prognosis regarding lung cancer in chest x-ray images.

Real-Time Object Tracking and Segmentation Using Adaptive Color Snake Model

  • Seo Kap-Ho;Shin Jin-Ho;Kim Won;Lee Ju-Jang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.236-246
    • /
    • 2006
  • Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks such as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. In this paper, the development of new snake model called 'adaptive color snake model (ACSM)' for segmentation and tracking is introduced. The simple operation makes the algorithm runs in real-time. For robust tracking, the condensation algorithm was adopted to control the parameters of ACSM. The effectiveness of the ACSM is verified by appropriate simulations and experiments.