• Title/Summary/Keyword: Segment head

Search Result 116, Processing Time 0.024 seconds

Loss of Surface-Associated Albumin during Capacitation and Acrosome Reaction of Mouse Epididymal Sperm in vitro (정자의 수정능력획득 과정 동안 정자표면의 Albumin의 이탈현상)

  • 계명찬;김문규
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.514-522
    • /
    • 1995
  • In order to examine the interaction of albumin with the sperm during capacitation in mouse, proteins of cauda epididymal sperm were extracted under various conditions and analyzed with SDS-PAGE. Sperm surface labeling patterms were also examined using fluorochroin~conjugated wheat germ agglutinin (WGA) and bovine serum albumin (BSA). Albumin was detached from the sperm surface during the incubation and seemed to be constituted the major protein components of the conditioned media in which sperm incubated for 90 mm. Detachment of albumin from the sperm was not affected by the Ca2+ in the medium. WGA-FITC labeling confirmed that Triton X-100 permeabilired plasma membrane overlaying the apical segment of sperm head and detached plasma membrane associated proteins having negatively charged glycoconjugates. BSA-FITC labeling of epididymal sperm occurred on the apical segment of periacrosoinal region and postacrosomal region of the head. BSA-FITC labeling was not observed in periacrosoinal region of the sperm treated with Ca2+-ionophore ~3187 (10 MM)~ whereas the postacrosome region of acrosome-reacted sperm was still labeled after the AR. These results suggest that albumin bound to the surface of epididymal sperm is detached during the capacitation process, and it might be involved In physiological change of sperm plasma membrane accompanying the capacitation.

  • PDF

Congenital Esophageal Atresia with Tracheoesophageal Fistula -A Case Report- (선천성 식도폐쇄 및 기관식도루 -1례 보고-)

  • Lee, Mun-Geum;Jang, Un-Ha
    • Journal of Chest Surgery
    • /
    • v.27 no.6
    • /
    • pp.489-493
    • /
    • 1994
  • Our patient was a 2.3 kg, male of 33 weeks gestation and spontaneous vaginal delivery. Copious salivary secretion, mild aspiration pneumonia episode due to tracheoesophageal fistula and intermittent cyanotic appearance due to hypoxia were noted shortly after birth. Head up position, frequent upper pouch suction, and adequate fluid and antibiotic therapy were done in incubator. Combined Chest and abdominal film was revealed gas in the stomach and an haziness in right chest with mediastinal shift to the right side. Esophagogram revealed markedly dilated proximal esophagus as blind pouch, and Two dimensional echocardiography showed the Ventricular Septal Defect. The conclusion was congenital esophageal atresia with tracheoesophageal fistula, Vogt-Gross type C, Waterston Risk Category B. Surgical correction with Beardmore anastomosis was performed extrapleurally through 3rd rib bed after the cannulation of umbilical vein and preliminary gastrostomy. The fistula was closed by triple ligation and the upper pouch was then brought down to the presenting surface of the lower esophageal segment that incised, and end to side anastomosis was underwent using interrupt suture placed through the full thickness of both upper pouch and lower esophageal segment. The postoperative patient was well tolerated and recovered uneventfully, permitted feeding on 7th postoperative day after esophagogram.

  • PDF

A Review on the Mechanism of Human Postural Control (인간의 자세조절 메커니즘에 대한 연구)

  • Lee, Dong-Woo
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.45-61
    • /
    • 2005
  • Stance is defined as any state in which the total mass of the body is supported by the feet. In order to maintain stance, the sum of gravito-inertial forces acting on the body must be registered by equal and opposite forces at the region of contact between the organism and the support surface. Balance is controlled by applying forces to the surface of support so as to maintain the body's center of mass vertically above the feet. for a muIti-segment organism, there can be a variety of ways in which balance can be controlled, since movements of different body segments can have similar effects on the control of balance. In general, the organism tends to have a body configuration that is aligned with gravito-inertial force when there are no external forces acting on it. If any segments of the body are not aligned with gravito-inertial force vector, a torque on that segment would tend to move the body's center of mass. The maintenance of postural stability is accomplished in humans by a complex neural control system. This requires organizing integrating and acting upon visual, vestibular, and somatosensory input, providing orientation information to the postural control system. The information necessary to control and coordinate movement is provided by the visual sense of eye position with respect to the surrounding surface layout, the vestibular sense of head orientation in the gravito-inertial space, and the somatic sense of body segment position relative to one another and to the support surface. In this study, perception and action capability was examined from various points of view. The underlying assumption of the study was that the change of postural configuration could be effected by organism, environment and task goal.

An Analysis on Kinematically Contributing Factors at Impact of Forehand Drive Motion in Squash (스쿼시 포핸드 드라이브 동작의 임팩트시 운동학적 주요요인 분석)

  • Lee, Kyung-Il;Lee, Hee-Kyung
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.29-39
    • /
    • 2007
  • This study were obtained elapsed time phase-by-phases, displacement, user angle, velocity and angular velocity to analyse kinematically contributing factors at impact of forehand drive motion, on targeting three male players. The results of the study were presented as follows; In the forehand drive swing, the elapsed time by phases was a total of .52 seconds: .30 seconds from backswing to impact and .22 seconds from impact to follow-through, Considering the mean change in locations of COM of each(part$\rightarrow$body segment) at impact, racket head, left shoulder, right wrist and left hip, the left-right directions(X-axis) were showm to be each $.61{\pm}.03$, $1.19{\pm}.08$, $.66{\pm}.03$, $.94{\pm}.06$, and $.45{\pm}.03m$. The displacement differences of COM of each body segment were shown to be -.57, -.05, -.33, and .16m. For the vertical direction(Z-axis), the center of mass was lowest at impact and highest at E3. For the displacement of the right wrist on the left hip, the right wrist moved to .82m to the lower direction without change in the locations of the hip from E1 from E2. When the left hip moved .02m from E2 to E3, the right wrist moved .7m in the upper direction. In respect to the velocity of each body segment, the hip and the shoulder joint accelerated and then the wrist followed. Then the right wrists of all the subjects and their racket heads showed maximum speed, and an effective swing was observed. At the angle of each part, the angle of the right wrist was the smallest at the backswing and the largest at the moment of the impact. Then it increased gradually in the follow-through section. In respect of angular velocity for subject A, the hip moved and the largest change occurred. Immediately before the impact, the subject made a swing using his right wrist, his hip, and the shoulder joint, showing the maximum value, which was judged to be effective.

A High Image Compression for Computer Storage and Communication

  • Jang, Jong-Whan
    • The Journal of Natural Sciences
    • /
    • v.4
    • /
    • pp.191-220
    • /
    • 1991
  • A new texture segmentation-based image coding technique which performs segmentation based on roughness of textural regions and properties of the human visual system (HVS) is presented. This method solves the problems of a segmentation-based image coding technique with constant segments by proposing a methodology for segmenting an image texturally homogeneous regions with respect to the degree of roughness as perceived by the HVS. The fractal dimension is used to measure the roughness of the textural regions. The segmentation is accomplished by thresholding the fractal dimension so that textural regions are classified into three texture classes; perceived constant intensity, smooth texture, and rough texture. An image coding system with high compression and good image quality is achieved by developing an efficient coding technique for each segment boundary and each texture class. For the boundaries, a binary image representing all the boundaries is created. For regions belonging to perceived constant intensity, only the mean intensity values need to be transmitted. The smooth and rough texture regions are modeled first using polynomial functions, so only the coefficients characterizing the polynomial functions need to be transmitted. The bounda-ries, the means and the polynomial functions are then each encoded using an errorless coding scheme. Good quality reconstructed images are obtained with about 0.08 to 0.3 bit per pixel for three different types of imagery ; a head and shoulder image with little texture variation, a complex image with many edges, and a natural outdoor image with highly textured areas.

  • PDF

CONSTRUCTION MANAGEMENT OF TUNNELLING IN SEVERE GROUNDWATER CONDITION

  • Young Nam Lee;Dae Young Kim
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.655-661
    • /
    • 2005
  • For a hydro power plant project, the headrace tunnel having a finished diameter of 3.3m was constructed in volcanic rocks with well-developed vertical joint and high groundwater table. The intake facility was located 20.3 km upstream of the powerhouse and headrace tunnel of 20 km in length and penstock of 440 m in height connected the intake and the powerhouse. The typical caldera lake, Lake Toba set the geology at the site; the caving of the ground caused tension cracks in the vertical direction to be developed and initial stresses at the ground to be released. High groundwater table(the maximum head of 20 bar) in the area of well-connected vertical joints delayed the progress of tunnel excavation severely due to the excessive inflow of groundwater. The excavation of tunnel was made using open-shield type TBM and mucking cars on the rail. High volume of water inflow raised the water level inside tunnel to 70 cm, 17% of tunnel diameter (3.9 m) and hindered the mucking of spoil under water. To improve the productivity, several adjustments such as modification of TBM and mucking cars and increase in the number of submersible pumps were made for the excavation of severe water inflow zone. Since the ground condition encountered during excavation turned out to be much worse, it was decided to adopt PC segment lining instead of RC lining. Besides, depending on the conditions of the water inflow, rock mass condition and internal water pressure, one of the invert PC segment lining with in-situ RC lining, RC lining and steel lining was applied to meet the site specific condition. With the adoption of PC segment lining, modification of TBM and other improvement, the excavation of the tunnel under severe groundwater condition was successfully completed.

  • PDF

Optimal valve installation of water distribution network considering abnormal water supply scenarios (비정상 물공급 시나리오를 고려한 상수도관망 최적 밸브위치 결정)

  • Lee, Seungyub;Jung, Donghwi
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.719-728
    • /
    • 2019
  • Valve in water distribution network (WDN), that controls the flow in pipes, is used to isolate a segment (a part of WDN) under abnormal water supply conditions (e.g., pipe breakage, water quality failure event). The segment isolation degrades pressure and water serviceability in neighboring area during the water service outage of the segment. Recent hydraulic and water quality failure events reported encouraging WDN valve installation based on various abnormal water supply scenarios. This study introduces a scenario-based optimal valve installation approach to optimize the number of valves, the amount of undelivered water, and a shortest water supply path indicator (i.e., Hydraulic Geodesic Index). The proposed approach is demonstrated in the valve installation of Pescara network, and the optimal valve sets are obtained under multiple scenarios and compared to the existing valve set. Pressure-driven analysis (PDA) scheme is used for a network hydraulic simulation. The optimal valve set derived from the proposed method has 19 fewer valves than the existing valve set in the network and the amount of undelivered water was also lower for the optimal valve set. Reducing the reservoir head requires a greater number of valves to achieve the similar functionality of the WDN with the optimal valve set of the original reservoir head. This study also compared the results of demand-driven analysis (DDA) and the PDA and confirmed that the latter is required for optimal valve installation.

Suppression of performance degradation due to cold-head orientation in GM-type pulse tube refrigerator

  • Ko, Junseok;Kim, Hyobong;Park, Seong-Je;Hong, Yong-Ju;Koh, Deuk-Yong;Yeom, Hankil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.50-53
    • /
    • 2012
  • This paper describes experimental study on GM-type pulse tube refrigerator (PTR). In a PTR, the pulse tube is only filled with working gas and there exists secondary flow due to a large temperature difference between cold-end and warm-end. The stability of secondary flow is affected by orientation of cold-head and thus, the cooling performance is deteriorated by gas mixing due to secondary flow. In this study, a single stage GM-type pulse tube refrigerator is fabricated and tested. The cooing performance of the fabricated PTR is measured as varying cold-head orientation angle and the results are used as reference data. Then, we divided interior space of pulse tube into three segments, and fixed the various size of screen mesh at interface of each segment to suppress the performance degradation due to secondary flow. For various configuration of pulse tube, no-load test and heat load test are carried out with the fixed experimental condition of charging pressure, operating frequency and orifice valve turns. From experimental results, the fine screen mesh shows the effective suppression of performance degradation for the large orientation angle, but the use of screen mesh cause the loss of cooling capacity rather than the case of no insertion into pulse tube. It should be compromised whether the use of screen mesh in consideration of the installation limitation of a GM-type pulse tube refrigerator.

Comparison of the Kinematic Variables in the Badminton Smash Motion (숙련도에 따른 배드민턴 스매쉬 동작의 운동학적 변인 비교)

  • So, Jae-Moo;Han, Sang-Min;Seo, Jin-Hee
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • The purpose of this study was to analyze kinematic variables in the badminton smash motion through 3-dimensional image analysis. The kinematic variables were velocity of joints in upper limbs, the angle of wrist in the impact, and the angular velocity of the top of racket head. The smash motions of four male badminton players in H University and four male students at department of the physical education in K University who were not majoring in badminton were analyzed kinematically and the attained conclusions were as follow. 1. The velocity of segments in upper limbs of the unskilled group was faster than that of the skilled group. The movement pattern was fast back swing-slow impact moment-fast fellow through in the unskilled group, but slow back swing-fast impact moment-slow follow through in the sullied group. 2. As the BS phases, the velocity of segment in right shoulder was different significantly between groups. Right elbow and right wrist segments, velocity of racket head was different significantly between groups(p<.05) by IP phases. As the FT phases, there was no significant difference. 3. The angle of right wrist at the impact, the angle of palm flexion and the angle of palm flexion in aspect were shown that the skilled group was higher than unskilled group. There was no significant difference. 4. The velocity of racket head was shown that the unskilled group has fast velocity, but the angle velocity was shown the unskilled group has slow. 5. The angle velocity of racket head in aspect were no significant difference between groups, but maximal angle velocity was different significantly between groups(p<.05).

Ultrastructural Observation on the Sperm of the Grey Red-blacked Vole, Clethrionomys rufocanus (대륙밭쥐(Clethrionomys rufocanus) 정자의 미세구조 관찰)

  • Lee, Jung-Hun
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.89-99
    • /
    • 2009
  • To investigate the morphological characteristics of spermatozoa of the grey red-blacked vole (Clethrionomys rufocanus) belongings to the subfamily Cricetinae, subgenus Clethrionomys were examined by scanning and transmission electron microscopes. The sperm head of C. rufocanus was an ax or hatchet in shape with a curved single dorsal hook. The total length of C. regulus sperm was 95.8 ${\mu}m$. The length of sperm head was 7.8 ${\mu}m$, and the tail (88.0 ${\mu}m$) consisted of four major segments: the neck (1.0 ${\mu}m$), middle piece (22.0 ${\mu}m$), and principal piece plus end piece (65.0 ${\mu}m$), respectively. The segmented columns were about 10~12 in number. The number of gyres of mitochondria ranged from about 170 to 178. The post-nuclear cap occupied about a half of nucleus. The equatorial segment is located between the post-nuclear cap segment and acrosomal cap on the nuclear surface. Nos. 1, 5 and 6 of the outer dense fibers were larger than the others. A fibrous sheath and longitudinal column of the principal piece were in evidence, but the fibrous sheath was not seen at the end piece. In conclusion, the morphological structures of sperm head and tail may be useful information to patterning of sperm evolution and classifying of species.