• 제목/요약/키워드: Seeding device

검색결과 28건 처리시간 0.018초

Detection Method for Bean Cotyledon Locations under Vinyl Mulch Using Multiple Infrared Sensors

  • Lee, Kyou-Seung;Cho, Yong-jin;Lee, Dong-Hoon
    • Journal of Biosystems Engineering
    • /
    • 제41권3호
    • /
    • pp.263-272
    • /
    • 2016
  • Purpose: Pulse crop damage due to wild birds is a serious problem, to the extent that the rate of damage during the period of time between seeding and the stage of cotyledon reaches 45.4% on average. This study investigated a method of fundamentally blocking birds from eating crops by conducting vinyl mulching after seeding and identifying the growing locations for beans to perform punching. Methods: Infrared (IR) sensors that could measure the temperature without contact were used to recognize the locations of soybean cotyledons below vinyl mulch. To expand the measurable range, 10 IR sensors were arranged in a linear array. A sliding mechanical device was used to reconstruct the two-dimensional spatial variance information of targets. Spatial interpolation was applied to the two-dimensional temperature distribution information measured in real time to improve the resolution of the bean coleoptile locations. The temperature distributions above the vinyl mulch for five species of soybeans over a period of six days from the appearance of the cotyledon stage were analyzed. Results: During the experimental period, cases where bean cotyledons did and did not come into contact with the bottom of the vinyl mulch were both observed, and depended on the degree of growth of the bean cotyledons. Although the locations of bean cotyledons could be estimated through temperature distribution analyses in cases where they came into contact with the bottom of the vinyl mulch, this estimation showed somewhat large errors according to the time that had passed after the cotyledon stage. The detection results were similar for similar types of crops. Thus, this method could be applied to crops with similar growth patterns. According to the results of 360 experiments that were conducted (five species of bean ${\times}$ six days ${\times}$ four speed levels ${\times}$ three repetitions), the location detection performance had an accuracy of 36.9%, and the range of location errors was 0-4.9 cm (RMSE = 3.1 cm). During a period of 3-5 days after the cotyledon stage, the location detection performance had an accuracy of 59% (RMSE = 3.9 cm). Conclusions: In the present study, to fundamentally solve the problem of damage to beans from birds in the early stage after seeding, a working method was proposed in which punching is carried out after seeding, thereby breaking away from the existing method in which seeding is carried out after punching. Methods for the accurate detection of soybean growing locations were studied to allow punching to promote the continuous growth of soybeans that had reached the cotyledon stage. Through experiments using multiple IR sensors and a sliding mechanical device, it was found that the locations of the crop could be partially identified 3-5 days after reaching the cotyledon stage regardless of the kind of pulse crop. It can be concluded that additional studies of robust detection methods considering environmental factors and factors for crop growth are necessary.

The Studying on Drum-type Hill-drop Unit

  • Zhang, Xuejun;Yang, Yin
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.996-998
    • /
    • 1996
  • The drum-type hill-drop unit, an important working device of the plastic -film-covered hill planter, can finish filling and separating seed precisely, perforating film and holing , and its seeding depth and spacing are stability . The unit is applied to hole seed many crops, for example, cotton, corn , soybean, etc. The drum-type hill-drop unit(DHU) , the key work unit to the plastic film-covered planter, mainly consists of distributor box , seeding parts, hole forming unit and drum , It can be operated to accomplish seeds distributing, hole forming , plastic film perforating . Moreover , its inner cavity can be used as seed box.

  • PDF

콩.옥수수 육묘용 파종기 개발에 관한 연구 (A Study on the Development of the Seeder for Soybean and Corn)

  • 김동억;김현환;김종구;이공인;김성기;장유섭
    • Journal of Biosystems Engineering
    • /
    • 제35권5호
    • /
    • pp.330-335
    • /
    • 2010
  • Soybean (Glycine max Merr.) and corn (Zea mays L.) transplanting has increased because soybean and corn crops cultivated by the direct seeding method were often damaged by wild birds. The purpose of this study is to develop a seeder to sow soybean (Glycine max Merr.) and corn (Zea mays L.) in a plug tray. In order to find out design factors for a metering device of the seeder, metering characteristics on metering hole size and roller speed were experimentally investigated. Soybean (cv. 'Daewon') and corn (cv. 'Mibaekchal') were used as a materials for testing the seeder in this experiment. The metering hole size of roller suitable for Daewonkong and Mibaekchal was determined. Daewonkong was suitable for hole diameter of 10 mm and hole depth of 5.5 mm, and Mibaekcal was suitable for hole diameter of 9 mm and hole depth of 5.5 mm. At a brush length of 4 mm, one grain seeding rates of Daewonkong and Mibaekchal was 99% and 93% respectively. By inducing Mibaekchal to the hole by swing, one grain seeding rate of that increased from 91.9% to 97.7%. When roller speed is 4 m per minut, seeding efficiency of prototype was 110 sheets per hour.

Self-seeding FP-LD을 이용한 파장 가변 레이저 광원 (Tunable laser source using a self-seeding FP-LD)

  • 김정민;이혁재
    • 융합신호처리학회논문지
    • /
    • 제22권3호
    • /
    • pp.104-109
    • /
    • 2021
  • 본 논문에서는 self-seeding FP-LD (Fabry Perot Laser Diode)를 이용하여 WDM-PON (Wavelength Division Multiplexing - Passive Optical Network)에서 사용될 수 있는 새로운 파장 가변 광원의 가능성을 검증한다. 파장 가변 광원을 이용한 WDM-PON의 기존 구현은 AWG (Arrayed Waveguide Grating) 소자의 중심 파장과 광원의 중심 파장을 세밀히 정렬해 주어야 하는 단점이 발생한다. 그러나, 본 논문에서 제안하는 파장 가변 광원은 매우 간단한 구조로 구성되며, 가변 파장이 AWG의 중심 파장에 자동 정렬되는 장점을 갖는다. 구현된 파장 가변 광원은 약 14 nm 정도 이상의 파장 가변 대역을 보였고, 상대적 세기 잡음, RIN (Relative Intensity Noise)은 최대 약 -124dB/Hz로 나타났으며, 외부 변조기를 통해 변조한 결과 10Gb/s 신호에 대한 변조 가능성을 확인 할 수 있었다.

Anaerobic Direct Seeder Engineering Component of the Rice Anaerobic Seeding Technology

  • Borlagdan, Paterno C.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.1009-1020
    • /
    • 1996
  • Direct-seeded rice can have comparable yield with transplanted rice if its inherent problems can be solved. It is a labor-saving technology and can significantly reduce production cost because seedling nursery , pulling , and transplanting are omitted. Turnaround time between cropping is reduced hence the possibility of a third annual crop. But direct-seeded rice is very vulnerable to pest attack (by birds, rats, and golden snails), desiccation, weed infestation, and prone to lodging resulting to unstable crop establishment and inconsistent yield. These problems can be solved by anaerobic seeding (sowing pre-germinated seeds under the soil). It requires precise seed placement into the soil to optimize its benefits. We developed a four-row anaerobic direct seeder (US $ 200 commercial price) for this purpose . It consist of a structural framework mounted with a drum -hopper metering device, flotation type drivewheels, spring-loaded and adjustable furrow closers, and furrow open rs, and a plastic rainguard. It can sow in line pre-germinated seeds into the soil thus permitting the use of mechanical weeders for a chemical-free weed control. Its performance was comparable with the Japanese two-row anaerobic seeder (costing US$400) in terms of seed placement and crop establishment. It was tested with five cultivars. Seeding rate varied from 38 kg/ha to 80kg/ha. Crop establishment ranged from 64 to 99 percent while grain yield varied from 3.0 t/ha to 5.4t/ha. A six-row anaerobic seeder was also developed and adapted to a powertiller for increased capacity , field efficiency , and easier operation. The anaerobic seeder is useful to farmers shifting to direct seeding to reduce rice production cost and to researchers conducting agronomic studies in direct-seeded rice. Blueprint of the machine is available free of charge from IRRI.

  • PDF

기상조절용 하이브리드 로켓의 실험 설계 및 활용연구 (Study on Weather Modification Hybrid Rocket Experimental Design and Application)

  • 차주완;김부요;;노용훈;고아름;김선희;박동오;박지만;구해정;장기호;이용희;김수종
    • 대기
    • /
    • 제34권2호
    • /
    • pp.203-216
    • /
    • 2024
  • The National Institute of Meteorological Sciences in Korea has developed the Weather Modification Hybrid Rocket (WMHR), an advanced system that offers enhanced stability and cost-effectiveness over conventional solid-fuel rockets. Designed for precise operation, the WMHR enables accurate control over the ejection altitude of pyrotechnics by modulating the quantity of oxidizer, facilitating specific cloud seeding at various atmospheric layers. Furthermore, the rate of descent for pyrotechnic devices can be adjusted by modifying parachute sizes, allowing for controlled dispersion time and concentration of seeding agents. The rocket's configuration also supports adjustments in the pyrotechnic device's capacity, permitting tailored seeding agent deployment. This innovation reflects significant technical progression and collaborations with local manufacturers, in addition to efforts to secure testing sites and address hybrid rocket production challenges. Notable outcomes of this project include the creation of a national framework for weather modification technology utilizing hybrid rockets, enhanced cloud seeding methods, and the potential for broader meteorological application of hybrid rockets beyond precipitation augmentation. An illustrative case study confirmed the WMHR's operational effectiveness, although the impact on cloud seeding was limited by unfavorable weather conditions. This experience has provided valuable insights and affirmed the system's potential for varied uses, such as weather modification and deploying high-altitude meteorological sensors. Nevertheless, the expansion of civilian weather rocket experiments in Korea faces challenges due to inadequate infrastructure and regulatory limitations, underscoring the urgent need for advancements in these areas.

Microfluidic System Based High Throughput Drug Screening System for Curcumin/TRAIL Combinational Chemotherapy in Human Prostate Cancer PC3 Cells

  • An, Dami;Kim, Kwangmi;Kim, Jeongyun
    • Biomolecules & Therapeutics
    • /
    • 제22권4호
    • /
    • pp.355-362
    • /
    • 2014
  • We have developed a fully automated high throughput drug screening (HTDS) system based on the microfluidic cell culture array to perform combinational chemotherapy. This system has 64 individually addressable cell culture chambers where the sequential combinatorial concentrations of two different drugs can be generated by two microfluidic diffusive mixers. Each diffusive mixer has two integrated micropumps connected to the media and the drug reservoirs respectively for generating the desired combination without the need for any extra equipment to perfuse the solution such as syringe pumps. The cell array is periodically exposed to the drug combination with the programmed LabVIEW system during a couple of days without extra handling after seeding the cells into the microfluidic device and also, this device does not require the continuous generation of solutions compared to the previous systems. Therefore, the total amount of drug being consumed per experiment is less than a few hundred micro liters in each reservoir. The utility of this system is demonstrated through investigating the viability of the prostate cancer PC3 cell line with the combinational treatments of curcumin and tumor necrosis factor-alpha related apoptosis inducing ligand (TRAIL). Our results suggest that the system can be used for screening and optimizing drug combination with a small amount of reagent for combinatorial chemotherapy against cancer cells.

박과 종자용 진공노즐식 파종기 개발(II) -대립종자의 종자보충, 정렬 및 파종성능시험 - (Development of Vacuum Nozzle Seeder for Cucuribitaceous Seeds(II) - Test of Seed feeding, Arranging and Sowing performance of large seeds -)

  • 김동억;장유섭;김종구;김현환;이동현
    • Journal of Biosystems Engineering
    • /
    • 제28권6호
    • /
    • pp.531-536
    • /
    • 2003
  • This study was carried out to develop a vacuum nozzle seeder for large seeds and performance was tested on seed feeding, arranging. and sowing peformance. The results of this study were as follows: The operation of feeding device of the seeder was programmed to operate a period of setting time after sowing 6 rows. The setting time was decided based on a discharged seed by the angular speed of feeding roller. The arranging accuracy of 'tuktozwa', 'hukjong' and 'chambak' was 96.4%, 95.2% and 89.4% respectively. The working performance was 75.6sheet/hr which was 3.8 times higher than that of manual work. An average seeding rate of 1 grain was 97.8%.

Research of Non-integeral Spatial Interpolation for Precise Identifying Soybean Location under Plastic Mulching

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.156-156
    • /
    • 2017
  • Most crop damages have been occurred by vermin(e.g., wild birds and herbivores) during the period between seeding and the cotyledon level. In this study, to minimize the damage by vermin and acquire the benefits such as protection against weeds and maintenance of water content in soil, immediately vinyl mulching after seeding was devised. Vinyl mulching has been generally covered with black color vinyl, that crop seeding locations cannot be detected by visible light range. Before punching vinyl, non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. For this study, the spline method was relatively faster than the other polynomial interpolation methods, because it has a lower maximum order of formulation when using a system such as the tridiagonal linear equation system which provided the capability of real-time processing. The temperature distribution corresponding to the distance between the crops was 10 cm, and the more clearly the leaf pattern of the crop was visually confirmed. The frequency difference was decreased, as the number of overlapped pixels was increased. Also the wave pattern of points where the crops were recognized were reduced.

  • PDF

Detection of Precise Crop Locations under Vinyl Mulch using Non-integral Moving Average Applied to Thermal Distribution

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-Seung;Lee, Dong-Hoon
    • Journal of Biosystems Engineering
    • /
    • 제42권2호
    • /
    • pp.117-125
    • /
    • 2017
  • Purpose: Damage to pulse crops by wild birds is a serious problem. The damage is to such an extent that the rate of damage during the period between seeding and cotyledon stages reaches 54.6% on an average. In this study, a crop-position detection method was developed wherein infrared (IR) sensors were used to determine the cotyledon position under a vinyl mulch. Methods: IR sensors that helped measure the temperature were used to locate the cotyledons below the vinyl mulch. A single IR sensor module was installed at three locations of the crops (peanut, red lettuce, and crown daisy) in the cotyledon stage. The representative thermal response of a $16{\times}4$ pixel area was detected using this sensor in the case where the distance from the target was 25 cm. A spatial image was applied to the two-dimensional temperature distribution using a non-integral moving-average method. The collected data were first processed by taking the moving average via interpolation to determine the frame where the variance was the lowest for a resolution unit of 1.02 cm. Results: The temperature distribution was plotted corresponding to a distance of 10 cm between the crops. A clear leaf pattern of the crop was visually confirmed. However, the temperature distribution after the normalization was unclear. The image conversion and frequency-conversion graphs were obtained based on the moving average by averaging the points corresponding to a frequency of 40 Hz for 8 pixels. The most optimized resolutions at locations 1, 2, and 3 were found on 3.4, 4.1, and 5.6 Pixels, respectively. Conclusions: In this study, to solve the problem of damage caused by birds to crops in the cotyledon stage after seeding, the vinyl mulch is punched after seeding. The crops in the cotyledon stage could be accurately located using the proposed method. By conducting the experiments using the single IR sensor and a sliding mechanical device with the help of a non-integral interpolation method, the crops in the cotyledon stage could be precisely located.