• Title/Summary/Keyword: Seed crystal

Search Result 205, Processing Time 0.027 seconds

Growth of Quartz Crystals by Hydrothermal Temperature Difference Method (수열(水熱) 온도차법(溫度差法)에 의한 수정(水晶)의 육성(育成))

  • Kim, Moon-Young;Jang, Young-Nam;Shin, Hong-Ja;Bae, In-Kuk
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 1991
  • High quality quartz crystals are grown in 0.5N NaOH + LiOH solution on the seed crystal at $370-395^{\circ}C$ and $1200-1300kg/cm^2$ condition. Growth rates are determined by the crystal thickness grown on the seed crystals with Z(0001) and X($11\bar{2}0$) direction. Relatively high growth rate of Z(0001) direction gradually changes as the temperaure difference (${\Delta}$ Ti) between growth and dissolution zones from 25 to $10^{\circ}C$. The X axis direction is affeced by ${\Delta}$ Ti, and +X($11\bar{2}0$) direction shows a high growth rate than -X($\bar{1}\bar{1}20$) direction. According to the variation with kinds of solutions used, the crystal growth that in NaOH solution is found to be slower than that in $Na_2CO_3$ solution. However, for the case in the NaOH solution mixed with LiOH, it shows a favorable growth rate in terms of grown crystal quality.

  • PDF

Characterization of Poly-Si TFT's using Amorphous-$Si_xGe_y$ for Seed Layer (Amorphous-$Si_xGe_y$을 seed layer로 이용한 Poly-Si TFT의 특성)

  • Jung, Myung-Ho;Jung, Jong-Wan;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.125-126
    • /
    • 2007
  • Polycrystalline silicon thin-film-transistors (Poly-Si TFT's) with a amorphous-$Si_xGe_y$ seed layer have been fabricated to improve the performance of TFT. The dependence of crystal structure and electrical characteristics on the the Ge fractions in $Si_xGe_y$ seed layer were investigated. As a result, the increase of grain size and enhancement of electrical characteristics were obtained from the poly-Si TFT's with amorphous-SixGey seed layer.

  • PDF

Recovery of High Concentrated Phosphates using Powdered Converter Slag in Completely Mixed Phosphorus Crystallization Reactor (완전혼합형 정석탈인반응조에서 미분말 전로슬래그를 이용한 고농도 인의 회수)

  • Kim, Eung-Ho;Yim, Soo-Bin;Jung, Ho-Chan;Lee, Eok-Jae;Cho, Jin-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.59-65
    • /
    • 2005
  • A phosphate recovery system from artificial wastewater was developed using a completely mixed phosphorus crystallization reactor, in which powdered converter slag was used as a seeding crystal. In preliminary test, the optimal pH range for meta-stable hydroxyapatite crystallization for high phosphorus concentration was observed to be 6.0 to 7.0, which was different from the conventionally known pH range (8.0~9.5) for effective crystallization in relatively low phosphorus concentration less than 5 mg/L. The average phosphorus removal efficiency in a lab-scaled completely mixed crystallization system for artificial wastewater with about 100 mg/L of average $PO_4-P$ concentration was shown to be 60.9% for 40 days of lapsed time. XRD analysis exhibited that crystalline of hydroxyapatite formed on the surface of seed crystal, which was also observed in SEM analysis. In EDS mapping analysis, composition mole ratio (=Ca/P) of the crystalline was found to be 1.78, indicating the crystalline on the surface of seed crystal is likely to be hydroxyapatite. Particle size distribution analysis showed that average size of seed crystal increased from $28{\mu}m$ up to $50{\mu}m$, suggesting that phosphorus recycling from wastewater with high phosphorus concentration can be successfully obtained by using the phosphorus crystallization recovery system.

Low-temperature Epitaxial Growth of a Uniform Polycrystalline Si Film with Large Grains on SiO2 Substrate by Al-assisted Crystal Growth

  • Ahn, Kyung Min;Kang, Seung Mo;Moon, Seon Hong;Kwon, HyukSang;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.103-108
    • /
    • 2013
  • Epitaxial growth of a high-quality thin Si film is essential for the application to low-cost thin-film Si solar cells. A polycrystalline Si film was grown on a $SiO_2$ substrate at $450^{\circ}C$ by a Al-assisted crystal growth process. For the purpose, a thin Al layer was deposited on the $SiO_2$ substrate for Al-assisted crystal growth. However, the epitaxial growth of Si film resulted in a rough surface with humps. Then, we introduced a thin amorphous Si seed layer on the Al film to minimize the initial roughness of Si film. With the help of the Si seed layer, the surface of the epitaxial Si film was smooth and the crystallinity of the Si film was much improved. The grain size of the $1.5-{\mu}m$-thick Si film was as large as 1 mm. The Al content in the Si film was 3.7% and the hole concentration was estimated to be $3{\times}10^{17}/cm^3$, which was one order of magnitude higher than desirable value for Si base layer. The results suggest that Al-doped Si layer could be use as a seed layer for additional epitaxial growth of intrinsic or boron-doped Si layer because the Al-doped Si layer has large grains.

$KTiOPO_4 (KTP)$ Single Crystal Growth by TSSG Technique (TSSG법에 의한 $KTiOPO_4 (KTP)$ 단결정 육성)

  • 김정환;강진기
    • Korean Journal of Crystallography
    • /
    • v.3 no.1
    • /
    • pp.37-43
    • /
    • 1992
  • KTiOP04 is a nonlinear optical crystal which is most widely used for frequency doubling of the radiation of Nd : YAG laser. In the experiment, sin ale crystals of KTiOP04 were grown by TSSG technique using 3K2W04·P2O5 flux. Low temperature gradient furnace suitable for KTP single crystal growth was used. Seed crystal was placed at the surface of the solution for the purpose of better observation of the growing crystals and the possibility of diameter control. Solution included 66.7mol% KTiOP04 for all experiments and its saturation temperature was 1020℃. The conditions of single crystal growth were as follows: cooling rate 0.2℃/h, crystal rotation rate 50rpm, c -axis seed. Using these conditions, single crystals up to 23 ×25×25mm3 have been groan from about 100cc solution. We have also observed a change in the crystal growth habit which resulted in the formation of large (201) faces and small (100) faces. And some crystals have (101) faces.

  • PDF

A study on growing of bulk AlN single crystals grown having a (011) growth face of by PVT method (PVT법을 이용한 (011)면으로 성장된 AlN 단결정 성장에 관한 연구)

  • Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.32-34
    • /
    • 2015
  • AlN Single Crystal were grown by PVT (Physical vapor transport) method on bulk seed. It was performed by high-frequency induction-heating coil. AlN source powder was loaded at bottom side of the carbon crucible and the crystal seed was loaded at the upper side of the crucible. The temperature conditions of the growth was varied $2000{\sim}2100^{\circ}C$ and the surrounding pressure was $1{\times}10^{-1}{\sim}200$ Torr. And the hot-zone of the heating position was controlled elaborately according to growth. The 17 mm-diameter, 7 mm-thickness AlN single crystal is obtained for about 600 hours growing. It was recognized that the growth direction of as grown crystal was R[011] by the Laue X-Ray camera measurement.

A study on the growth of 3 inch grade AlN crystal (직경 3인치의 AlN 단결정 성장에 관한 연구)

  • Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.140-142
    • /
    • 2019
  • AlN (Aluminum Nitride) crystal which could be used to substrates for UV LEDs was grown by PVT ((Physical Vapor Transport) method. 3 inch AlN single crystal with a thickenss of 4 mm was grown using Polycrystalline seed for 120 hours. In this report, a result of 3 inch polycrystalline bulk AlN growth behavior using large size crucible and growth condition were reported.

Effect of a seed layer on atomic layer deposition-grown tin oxide

  • Choi, Woon-Seop
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.128-128
    • /
    • 2009
  • The effect of seed layer on the preparation of tin oxide thin film by ALD using tetrakis(ethylmethylamino) tin precursor was examined. The average growth rate of tin oxide film is about 1.4 A/cycle from $50^{\circ}C$ to $150^{\circ}C$. The rate rapidly decreases at the substrate temperature at $200^{\circ}C$. The seed effect was not observed in crystal growth of thin oxide. However, the crystalline growth of seed material in tin oxide was detected by thermal annealing. ALD-grown seeded tin oxide thin film after thermal annealed was characterized by ellipsometry, XRD, AFM and XPS.

  • PDF

Effects of Seed Layer and Thermal Treatment on Atomic Layer Deposition-Grown Tin Oxide

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.222-225
    • /
    • 2010
  • The preparation of tin oxide thin films by atomic layer deposition (ALD), using a tetrakis (ethylmethylamino) tin precursor, and the effects of a seed layer on film growth were examined. The average growth rate of tin oxide films was approximately 1.2 to 1.4 A/cycle from $50^{\circ}C$ to $150^{\circ}C$. The rate rapidly decreased at the substrate temperature at $200^{\circ}C$. A seed effect was not observed in the crystal growth of tin oxide. However, crystallinity and the growth of seed material were detected by XPS after thermal annealing. ALD-grown seeded tin oxide thin films, as-deposited and after thermal annealing, were characterized by X-ray diffraction, atomic force microscopy and XPS.

Effects of seed geometry on the crystal growth and the magnetic properties of single grain REBCO bulk superconductors

  • Lee, Hwi-Joo;Park, Soon-dong;Jun, Bung-Hyuck;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.33-39
    • /
    • 2017
  • This study presents that the orientation and the geometry of seed affect on the growth behavior of melt processed single grain REBCO bulk superconductor and its magnetic properties. The effects of seed geometry have been investigated for thin $30mm{\times}30mm$ rectangular powder compacts. Single grain REBCO bulk superconductors have been grown successfully by a top seed melt growth method for 8-mm thick vertical thin REBCO slab. Asymmetric structures have been developed at the front surface and at the rear surface of the specimen. Higher magnetic properties have been obtained for the specimen that c-axis is normal to the specimen surface. The relationships between microstructure, grain growth and magnetic properties have been discussed.