• Title/Summary/Keyword: Seed and Idriss

Search Result 28, Processing Time 0.022 seconds

Dynamic Properties of Korean Subgrade Soils Using Resonant Column Test (공진주 시험기를 이용한 국내 노상토의 동적 물성치)

  • Kim, Dong-Su;Jeong, Chung-Gi;Hong, Seong-Yeong
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.85-96
    • /
    • 1994
  • Resonant column test huts been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in therms of shear and Young's moduli and material damping. In thin Paper, dynamic Properties of typical Korean subgrade boils are investigated at shearing strains between 10-4% and 10-1% using Stokoe-type resonant column teat. The elastic threshold strains(yte) above which shear modulus and damping ratio are affected by strain amplitude, are defined at strain amplitude of about 10-3%. Below yte", small-strain shear modulus (Gmn) increases with confining pressure (Qc) as proportional to (Qe)0.61, and small-strain damping ratio(Dmin) ranges between 1% and 5.7%. Above yte, normalized shear modulus reduction curve(G/Gma. versus log strain) can be quite well expressed with Ramberg Osgood stress -strain equation and match well the curve suggested for sand by Seed and Idriss.riss.

  • PDF

Dynamic Properties and Settlement Characteristics of Korea Weathered Granite Soils (화강풍화토의 동적 물성치와 침하특성에 대한 연구)

  • Park, Jong-Gwan;Kim, Yeong-Uk;Lee, In-Mo
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.5-14
    • /
    • 1993
  • Weathered granite soil is the most representative as a surface soil in Korea. In this paper, the dynamic properties and settlement characteristics of Korea granite soil are studied through the dynamic triaxial compression tests. The dynamic characteristics are very important on the analysis of the foundations under dynamic loading such as machine vibration and earthquake. Soil samples having different grain sixtes were prepared at the relative densities between 80oA and 90oA and tested to measure shear moduli and damping ratios at each level of shear strain. The measured shear moduli of weathered granite soils showed large variations according to the grain sizes, confining pressures, relative densities and shear strains. Sandy weathered granite had a little larger dynamic properties than the average values of the sand studied by Seed and Idriss. Pot the well compacted granite soils, little residual settlements occured due to dynamic loading.

  • PDF

Dynamic Deformation Characteristics of Fiber Reinforced Soils (섬유혼합토의 동적물성변형특성)

  • Jung, Sung-Yong;Kim, Dae-Il;Park, Chul-Soo;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.968-976
    • /
    • 2004
  • In the paper, deformation characteristics of fiber-mixed-soils, mixed polypropylene staple fibers of 0.3% fiber content with sands of various gradation, and their effectiveness of reinforcement were evaluated. A series of Resonant Column tests were performed with specimens prepared with varying Uniformity Coefficient and constant Curvature Coefficient. Maximum shear moduli 01 fiber-mixed-soils were increased by up to 30% and modulus reduction was also restrained in nonlinear range. Normalized shear modulus reduction curves of fiber-mixed-soils shift close to the upper limit of Seed curd Idriss's curves and are located within narrower band than those of unmixed soils, which proves the effectiveness on stiffness increment by reinforcing soils with fibers.

  • PDF

Evaluation Methods of Cyclic Shear Stress Ratio for the Assessment of Liquefaction in Korea (국내 액상화 평가를 위한 진동전단응력비 산정)

  • Yoo, Byeong-Soo;Bong, Tae-Ho;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.5-15
    • /
    • 2019
  • Usually, the cyclic shear stress ratio (CSR) for the assessment of liquefaction has been determined by performing ground response analysis or adopting simplified method suggested by Seed & Idriss with some modifications. In order to analyze the applicability of the CSR evaluation methods, the present study performed one-dimensional equivalent linear analysis and evaluated CSR based on design codes from FHWA, JRA, and KDS. The comparison of the CSR obtained from each code showed that the CSR from KDS showed the largest error with the analysis results. The reason is because KDS has an error, which defines the stress reduction coefficient applying the maximum acceleration at each depth, not the maximum cyclic shear stress mobilized in the soil.

Assessment of liquefaction potential of the Erzincan, Eastern Turkey

  • Duman, Esra Subasi;Ikizler, Sabriye Banu;Angin, Zekai;Demir, Gokhan
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.589-612
    • /
    • 2014
  • This study includes determination of liquefaction potential in Erzincan city center. Erzincan Province is situated within first-degree earthquake zone on earthquake map of Turkey. In this context, the earthquake scenarios were produced using the empirical expressions. Liquefaction potential for different earthquake magnitudes (6.0, 6.5, 7.0) were determined. Liquefaction potential was investigated using Standard Penetration Test (SPT). Liquefaction potential analyses are determined in two steps: geotechnical investigations and calculations. In the first steps, boreholes were drilled to obtain disturbed and undisturbed soil samples and SPT values were obtained. Laboratory tests were made to identify geotechnical properties of soil samples. In the second step, liquefaction potential analyses were examined using two methods, namely Seed and Idriss (1971), Iwasaki et al. (1981). The liquefaction potential broadly classified into three categories, namely non-liquefiable, marginally liquefiable and liquefiable regions. Additionally, the liquefaction potential index classified into four categories, namely non-liquefiable, low, high and very high liquefiable regions. In order to liquefaction analysis complete within a short time, MATLAB program were prepared. Following the analyses, liquefaction potential index is investigated by Iwasaki et al. (1982) methods. At the final stage of this study, liquefaction potential maps and liquefaction potential index maps of the all study area by using IDW (inverse distance weighted) interpolation method in Geostatistical Analyst Module of ArcGIS 10.0 Software were prepared for different earthquake magnitudes and different depths. The results of soil liquefaction potential were evaluated in ArcGIS to map the distributions of drillings with liquefaction potential. The maps showed that there is a spatial variability in the results obtained which made it difficult to clearly separate between regional areas of high or low potential to liquefy. However, this study indicates that the presence of ground water and sandy-silty soils increases the liquefaction potential with the seismic features of the region.

A Study on the Evaluation of Liquefaction of Sandy Soils by the Cyclic Triaxial Compression Test (反復三軸壓縮試驗에 의한 砂質土의 液狀化 評價에 관한 硏究)

  • Koh, Jae-Man;Doh, Duk-Hyun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.3
    • /
    • pp.51-62
    • /
    • 1991
  • A comprehensive laboratory investigation of the liquefaction characteristics of Jumunjin standard sand. Seoul sand and Hongsung sand was peformed by the undrained cyclic triaxial compression test under different relative densities, confining pressures and cyclic deviator stresses. The results obtained are as follows ; 1. Liquefaction potential was dominated by the stress ratio at a given number of cycle. That is, the number of cycle required to cause initial liquefaction became samller as the stress ratio increased. 2. Liquefaction potential of a sand was infliuenced by initial relative density or void ratio. Under a given relative density. liquefaction potential of Jumunjin standard sand and Seoul sand was smaller than that of Hongsung sand. 3. The pore pressure ratio of Hongsung sand was the smallest three under a given relative density and stress ratio, and it showed higher value when the cyclic stress and the shear strain were high. 4. An excessive pore pressure ratio not found when initial shear was smaller than 0.01%, and the pore pressure ratio started to increase when initial shear became greater than 0.01%. 5. Soil texture is an important factor to cause liquefaction, and liquefaction potential decreased a the mean grain size decreased. however the sand having fine grain such as Hongsung sand showed somewhat higher liquefaction potential. 6. Based on the analysis of the specimens whose number of the cycles to cause liquefaction was 8~12, it was found that the relationship between density and stress ratio was linear. The curves for Hongsung sand was steeper than the other. 7. From the above results and the method suggested by Seed-Idriss, it may be considered that the damages by Hongsung earthquake was not directly caused by liquefaction.

  • PDF

A Study on Liquefaction Assessment of Moderate Earthquake Region concerning Earthquake Magnitude of Korea (국내 지진규모를 고려한 중진 지역에서의 액상화 평가방법에 관한 연구)

  • Kim, Soo-Il;Park, Keun-Bo;Park, Seong-Yong;Seo, Kyung-Bum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.125-134
    • /
    • 2006
  • Conventional methods for the assessment of liquefaction potential were primary for severe earthquake regions $(M{\geq}7.5)$ such as North America and Japan. In Korea, an earthquake related research has started in 1997, but most contents in the guidelines were still quoted from literature reviews of North America and Japan, which are located in strong earthquake region. Those are not proper in a moderate earthquake regions including Korea. Also the equivalent uniform stress concept (Seed & Idriss, 1971) using regular sinusoidal loading which is used, in a conventional method for the assessment of liquefaction potential, can't reflect correctly the dynamic characteristics of real irregular earthquake motions. In this study, cyclic triaxial tests using irregular earthquake motions are performed with different earthquake magnitudes, relative densities, and fines contents. Assessment of liquefaction potential in moderate earthquake regions is discussed based on various laboratory test results. From the results, screening limits in seismic design were re-investigated and proposed using normalized maximum stress ratios under real irregular earthquake motions. Also from the tests using constant wedge loading and incremental wedge loading, the characteristics of liquefaction resistance of saturated sand under irregular ground motions are investigated.

A New Detailed Assessment for Liquefaction Potential Based on the Liquefaction Driving Effect of the Real Earthquake Motion (실지진하중의 액상화 발생특성에 기초한 액상화 상세평가법)

  • 최재순;강한수;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.145-159
    • /
    • 2004
  • The conventional method for assessment of liquefaction potential proposed by Seed and Idriss has been widely used in most countries because of simplicity of tests. Even though various data such as stress, strain, stress path, and excess pore water pressure can be obtained from the dynamic test, especially, two simple experimental data such as the maximum deviatoric stress and the number of cycles at liquefaction have been used in the conventional assessment. In this study, a new detailed assessment for liquefaction potential to reflect both characteristics of real earthquake motion and dynamic soil resistance is proposed and verified. In the assessment, the safety factor of the liquefaction potential at a given depth of a site can be obtained by the ratio of a resistible cumulative plastic shear strain determined through the performance of the conventional cyclic test and a driving cumulative plastic shear strain calculated from the shear strain time history through the ground response analysis. The last point to cumulate the driving plastic shear strain to initiate soil liquefaction is important for this assessment. From the result of cyclic triaxial test using real earthquake motions, it was concluded that liquefaction under the impact-type earthquake loads would initiate as soon as a peak loading signal was reached. The driving cumulative plastic shear strain, therefore, can be determined by adding all plastic shear strains obtained from the ground response analysis up to the peak point. Through the verification of the proposed assessment, it can be concluded that the proposed assessment for liquefaction potential can be a progressive method to reflect both characteristics of the unique soil resistance and earthquake parameters such as peak earthquake signal, significant duration time, earthquake loading type, and magnitude.