• Title/Summary/Keyword: Seed Vector

Search Result 67, Processing Time 0.031 seconds

Analysis of Thermotolerance in Hot Pepper Using the Antiserum Against Carrot HSP17

  • Hwang, Eun-Young;Hwang, Cheol-Ho;Yoo, Il-Woong
    • Journal of Plant Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • An antiserum against the carrot HSP17 (17 KDa heat shock protein) was raised using the HSP17 purified after being expressed in a recombinant E.coli in order to develop an assay system for thermotolerance in crops. The DCHsp17.7 including the coding sequence corresponding to a carrot HSP17 protein was recombined within pET-32(b) vector and achieved a maximum expression in 4 hours after an induction in E.coli. The purified DCHsp17.7 was used as an antigen to generate the corresponding antibody. The polyclonal antiserum was confirmed for it's specificity only to the low molecular weight (1mw) HSP. Besides, the possibilities to use the antiserum to interact with 1mwHSPs from other plants such as rice, cucumber, tomato, and hot pepper were examined to be plausible. To reveal any specific correlation between the amounts of 1mwHSP expressed upon HS conditions and an acquisition of thermotolerance two different approaches have been applied. first, it has been shown that only the pre-HS conditions inducing the synthesis of HSP17 allowed for the seedlings to achieve an thermotolerance and to survive the following lethal condition. Second, a western analysis using 15 different collected lines of hot peppers was performed to distinguish each other in terms of the amount of 1mwHSP. The results indicated that all 14 hot pepper lines were able to synthesize HSPs in response to an exposure to HS conditions and the amounts of the proteins synthesized at different HS temperatures were variable among the lines. There are several different patterns of 1mwHSP synthesized as a function of temperature increase observed and their correlation to physiological aspects of thermotolerance remains to be analyzed.

  • PDF

Highly efficient production of transgenic Scoparia dulcis L. mediated by Agrobacterium tumefaciens: plant regeneration via shoot organogenesis

  • Aileni, Mahender;Abbagani, Sadanandam;Zhang, Peng
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.147-156
    • /
    • 2011
  • Efficient Agrobacterium-mediated genetic transformation of Scoparia dulcis L. was developed using Agrobacterium tumefaciens strain LBA4404 harboring the binary vector pCAMBIA1301 with ${\beta}$-glucuronidase (GUS) (uidA) and hygromycin phosphotransferase (hpt) genes. Two-day precultured leaf segments of in vitro shoot culture were found to be suitable for cocultivation with the Agrobacterium strain, and acetosyringone was able to promote the transformation process. After selection on shoot organogenesis medium with appropriate concentrations of hygromycin and carbenicillin, adventitious shoots were developed on elongation medium by twice subculturing under the same selection scheme. The elongated hygromycin-resistant shoots were subsequently rooted on the MS medium supplemented with $1mg\;l^{-1}$ indole-3-butyric acid and $15mg\;l^{-1}$ hygromycin. Successful transformation was confirmed by PCR analysis using uidA- and hpt-specific primers and monitored by histochemical assay for ${\beta}$-GUS activity during shoot organogenesis. Integration of hpt gene into the genome of transgenic plants was also verified by Southern blot analysis. High transformation efficiency at a rate of 54.6% with an average of $3.9{\pm}0.39$ transgenic plantlets per explant was achieved in the present transformation system. It took only 2-3 months from seed germination to positive transformants transplanted to soil. Therefore, an efficient and fast genetic transformation system was developed for S. dulcis using an Agrobacterium-mediated approach and plant regeneration via shoot organogenesis, which provides a useful platform for future genetic engineering studies in this medicinally important plant.

Papaya: A gifted nutraceutical plant - a critical review of recent human health research

  • Karunamoorthi, Kaliyaperumal;Kim, Hyung-Min;Jegajeevanram, Kaliyaperumal;Xavier, Jerome;Vijayalakshmi, Jayaraman
    • CELLMED
    • /
    • v.4 no.1
    • /
    • pp.2.1-2.17
    • /
    • 2014
  • The plant kingdom is considered to be a repository of modern medicine, attributable to their rich source of bio-active molecules and secondary metabolites. It is indeed the Nutraceuticals that enhance immunity and ensure a healthier life because of their prophylactic and therapeutic values. Over centuries, papaya [Caricaceae; (Carica papaya Linn.)] is a renowned nutritious and medicinal plant. Each part of the papaya like root, stem, leaf, flower, fruit, seed, rinds, and latex has its own nutraceutical properties. It serves as food, cooking aid, and Ethnomedicine to prevent and treat wide-range of diseases and disorders. It has also been traditionally used as appetite enhancer, meat tenderizer, purgative, medicinal acne, abortifacient and vermifuge. Over decades, a series of scientific attempts were made to authenticate the nutraceutical properties of papaya. These studies validated that the papaya has antiplasmodial, antitrichochramal, antitrichomonal, antidengue, and anti-cancer activities. They have also exhibited that papaya possesses antiseptic, antiparasitic, anti-inflammatory, antidiabetic, and contraceptive features, and it helps in the management of sickle-cell anaemia, HIV, heart diseases and digestional disorders too. Nevertheless, the responsible bio-active molecules and their mode of actions remain indistinct and imprecise, and this calls for further pharmacological and clinical research on them. Conclusively, papaya is one of the naturally gifted plants; though its nutraceutical properties as a food or as a quasi-drug are poorly understood or undervalued by people. Accordingly, this scrutiny, demand for instigation of public health awareness campaigns to promote papaya consumption, so that the society shall acquire optimal benefits of papaya and in turn prevent and alleviate various diseases and illness.

Extraction and Revision of Building Information from Single High Resolution Image and Digital Map (단일 고해상도 위성영상과 수치지도로부터 건물 정보 추출 및 갱신)

  • Byun, Young-Gi;Kim, Hye-Jin;Choi, Jae-Wan;Han, You-Kyung;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.149-156
    • /
    • 2008
  • In this paper, we propose a method aiming at updating the building information of the digital maps using single high resolution satellite image and digital map. Firstly we produced a digital orthoimage through the automatic co-registration of QuickBird image and 1:1,000 digital map. Secondly we extracted building height information through the template matching of digital map's building vector data and the image's edges obtained by Canny operator. Finally we refined the shape of some buildings by using the result from template matching as the seed polygon of the greedy snake algorithm. In order to evaluate the proposed method's effectiveness, we estimated accuracy of the extracted building information using LiDAR DSM and 1:1,000 digital map. The evaluation results showed the proposed method has a good potential for extraction and revision of building information.

A Hierarchical Semantic Video Object Tracking Algorithm Using Watershed Algorithm (Watershed 알고리즘을 사용한 계층적 이동체 추적 알고리즘)

  • 이재연;박현상;나종범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1986-1994
    • /
    • 1999
  • In this paper, a semi-automatic approach is adopted to extract a semantic object from real-world video sequences human-aided segmentation for the first frame and automatic tracking for the remaining frames. The proposed algorithm has a hierarchical structure using watershed algorithm. Each hierarchy consists of 3 basic steps: First, seeds are extracted from the simplified current frame. Second, region growing bv a modified watershed algorithm is performed to get over-segmented regions. Finally, the segmented regions are classified into 3 categories, i.e., inside, outside or uncertain regions according to region probability values, which are acquired by the probability map calculated from an estimated motion-vector field. Then, for the remaining uncertain regions, the above 3 steps are repeated at lower hierarchies with less simplified frames until every region is classified into a certain region. The proposed algorithm provides prospective results in studio-quality sequences such as 'Claire', 'Miss America', 'Akiyo', and 'Mother and daughter'.

  • PDF

Pollination Mechanism of Bupleurum latissimum (Apiaceae) (멸종위기종인 섬시호(Bupleurum latissimum, 산형과)의 수분기작)

  • So, Soonku;Han, Kyeongsuk;Kim, Muyeol;Park, Hyerim;Seo, Eunkyoung;Kim, Yang-Pyo;Kim, Tae-Heung
    • Korean Journal of Plant Taxonomy
    • /
    • v.38 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • The pollination system of Bupleurum latissimum Nakai (Apiaceae) was investigated in the natural population of Korea. The various insects of 19 species, 11 families, 5 orders visited the flowers of B. latissimum. Episyrphus balteatus and Lasioglossum occidens were considered as the most effective pollen vector which have associated specially with B. latissimum. The visitation frequency peaked at 10 AM - 13 PM and no visitor was recognized during night time. The flowers of B. latissimum last during only three days and they are protandry. It is also confirmed that the flower of B. latissimum is self-compatible and cross-pollination by vectors is critical for successful seed setting.

Study on hydroxy fatty acid contents changes and physiological responses under abiotic stresses in transgenic Camelina

  • Kim, Hyun-Sung;Lee, Hyun-Sook;Lim, Hyun-Gyu;Park, Won;Kim, Hyun-Uk;Lee, Kyeong-Ryeol;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.191-191
    • /
    • 2017
  • Hydroxy fatty acid (HFA) is an important industrial resource that known to be extracted from seeds of Castor or Lesquerella. However, mass production of HFA from those crops are difficult because of their behavior or life cycle. In this study, we applied HFA synthesis related gene FAH12, RcPDAT1, RcLPCAT, RcDGAT2, and RcPDCT on bioenergy crop Camelina sativa. Furthermore, we determined NaCl or cold stress tolerance changes of transgenic Camelina. RcFAH12, RcPDAT1, RcLPCAT, RcDGAT2, and RcPDCT genes were cloned into multigene expression vector which is engineered with seed specific promoter of FAE1 or Napin. Combination of HFA genes multi-expression vector constructs were divided into Set3 (RcFAH12, RcPDAT1-2, RcLPCAT), Set4 (RcFAH12, RcDGAT2, RCPDAT1-2, RcLPCAT), and Set5 (RcFAH12, RcDGAT2, RCPDAT1-2, RcLPCAT, RcPDCT). Transgenic HFA synthesis Camelina plants were generated using agrobacterium-mediated vacuum infiltration system. Results of fatty acid composition of T1 transgenic Camelina seeds analyzed by GC-MS showed 9.5, 9.0, and 13.6 % of HFA contents in Set3#6, Set4#8, and Set5#10, respectively. Therefore, seeds of T2 generation were harvest from Set5#10 which is shown highest HFA contents, and, 17.7, 8.1 and 10.5 % of HFA contents were determined in Set5#10-5, Set5#10-8, and Set#10-10, respectively. However, 7.7% of C18:2 and 22.3 % of C18:3 among unsaturated fatty acids were decreased in Set5#10-5 than WT. Meanwhile, we confirmed abiotic stress responses in T2 transgenic Camelina Set5#10-5 and Set5#10-10 under 0, 100, 150, and 200 mM NaCl or 25, 15, and $10^{\circ}C$ temperature for 5 weeks. Both Set5#10-5 and Set5#10-10 showed lower growth in height than WT in control and NaCl condition. Growth of leaf length and width were similar in WT and Set5#10-10 but lower in Set5#10-5 under NaCl stress. Number of opened flowers showed that both transgenic Camelina were lower than WT under normal condition. But, WT and Set5#10-10 showed similar opened flower number in 100 and 200 mM NaCl. In cold stress, 15 and $10^{\circ}C$ treatment for 5 weeks did not showed significant changes in between WT and both transgenic lines even they showed different growth rate in control condition. Taken together, growth and development are delayed by expression of exogenous HFA related genes in transgenic lines but relative abiotic stress sensitivity is similar with WT. In conclusion, reduced C18:2 or C18:3 fatty acid composition of seed by HFA synthesis is resulted from lack of resource supplement for development at seedling stage but it is not affect NaCl and cold stress tolerance.

  • PDF

Iron fortification of grains by introducing a recombinant gene of ferritin with seed promoters in rice (종자 특이 프로모터와 대두 Ferritin 유전자에 의한 벼 종실의 철분강화)

  • Cho, Yong-Gu;Kim, Hyung-Keun;Choi, Jang-Sun;Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.87-95
    • /
    • 2009
  • The recombinant DNAs, pGBF, pGTF, and pZ4F, using soybean ferritin gene have constructed with the promoters derived from seed proteins, glutelin, globulin, and zein. The recombinant ferritin genes were transformed into rice plant by Agrobacterium-mediated transformation. Iron contents and agronomic traits have been evaluated in the transgenic progenies. The embryogenic calli survived from second selection medium were regenerated at the rates of 19.2% with pGBF, 15.0% with pGTF, and 18.4% with pZ4F in Donganbyeo and 6.7% with pGBF, 11.7% with pGTF, and 3.4% with pZ4F in Hwashinbyeo. The introduction of ferritin gene in putative transgenic rice plants was confirmed by PCR and Southern blot analysis and also the expression of ferritin gene was identified by Northern blot and Western blot analysis. The iron accumulation in transgenic rice grains of the transgenic rice plant, T1-2, with zein promoter and ferritin gene contained 171.4 ppm showing 6.4 times higher than 26.7 ppm of Hwashinbyeo seed as wild type rice, but the transgenic plants with globulin and glutelin showed a bit higher iron contents with a range from 2.1 to 3.0 times compare to wild type grain. The growth responses of transgenic plants showed the large variances in plant height and number of tillers. However, there were some transgenic plants having similar phenotype to wild type plants. In the T1 generation of transgenic plants, plant height, culm length, panicle length, and number of tillers were similar to those of wild type plants, but ripened grain ratio ranged from 53.3% to 82.2% with relatively high variation. The transgenic rice plants would be useful for developing rice varieties with high iron content in rice grains.

Analysis of Mutant Chinese Cabbage Plants Using Gene Tagging System (Gene Tagging System을 이용한 돌연변이 배추의 분석)

  • Yu, Jae-Gyeong;Lee, Gi-Ho;Lim, Ki-Byung;Hwang, Yoon-Jung;Woo, Eun-Taek;Kim, Jung-Sun;Park, Beom-Seok;Lee, Youn-Hyung;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.442-448
    • /
    • 2010
  • The objectives of this study were to analyze mutant lines of Chinese cabbage ($Brassica$ $rapa$ ssp. $pekinensis$) using gene tagging system (plasmid rescue and inverse polymerase chain reaction) and to observe the phenotypic characteristics. Insertional mutants were derived by transferring DNA (T-DNA) of $Agrobacterium$ for functional genomics study in Chinese cabbage. The hypocotyls of Chinese cabbage 'Seoul' were used to obtain transgenic plants with $Agrobacterium$ $tumefaciens$ harboring pRCV2 vector. To tag T-DNA from the Chinese cabbage genomic DNA, plasmid rescue and inverse PCR were applied for multiple copies and single copy insertional mutants. These techniques were successfully conducted to Chinese cabbage plant with high efficiency, and as a result, T-DNA of pRCV2 vector showed distinct various integration patterns in the transgenic plant genome. The polyploidy level analysis showed the change in phenotypic characteristics of 13 mutant lines was not due to variation in somatic chromosome number. Compared with wild type, the $T_1$ progenies showed varied phenotypes, such as decreased stamen numbers, larger or smaller flowers, upright growth habit, hairless leaves, chlorosis symptoms, narrow leaves, and deeply serrated leaves. The polyploidy level analysis showed the change in phenotypic characteristics of 13 mutant lines was not due to variation in somatic chromosome number. To tag T-DNA from the Chinese cabbage genomic DNA, plasmid rescue and inverse PCR were applied for multiple copies and single copy insertional mutants. Mutants that showed distinct phenotypic difference compared to wild type with 1 copy of T-DNA by Southern blot analysis, and with 2n = 20 of chromosome number were selected. These selected mutant lines were sequenced flanking DNA, mapped genomic loci, and the genome information of the lines is being recorded in specially developed database.

Biosurfactant as a microbial pesticide

  • Lee, Baek-Seok;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.40-44
    • /
    • 2003
  • Soil-borne infectious disease including Pythium aphanidermatum and Rhizoctonia solani causes severe damage to plants, such as cucumber. This soil-borne infectious disease was not controlled effectively by chemical pesticide. Since these diseases spread through the soil, chemical agents are usually ineffective. Instead, biological control, including antagonistic microbe can be used as a preferred control method. An efficient method was developed to select an antagonistic strain to be used as a biological control agent strain. In this new method, surface tension reduction potential of an isolate was included in the ‘decision factor’ in addition to the other factors, such as growth rate, and pathogen inhibition rate. Considering these 3 decision factors by a statistical method, an isolate from soil was selected and was identified as Bacillus sp. GB16. In the pot test, this strain showed the best performance among the isolated strains. The lowest disease incidence rate and fastest seed growth was observed when Bacillus sp. GB16 was used. Therefore this strain was considered as plant growth promoting rhizobacteria (PGPR). The action of surface tension reducing component was deduced as the enhancement of wetting, spreading, and residing of antagonistic strain in the rhizosphere. This result showed that new selection method was significantly effective in selecting the best antagonistic strain for biological control of soil-borne infectious plant pathogen. The antifungal substances against P. aphanidermatum and R. solani were partially purified from the culture filtrates of Bacillus sp. GB16. In this study, lipopeptide possessing antifungal activity was isolated from Bacillus sp. GB16 cultures by various purification procedures and was identified as a surfactin-like lipopeptide based on the Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), high performance liquid chromatography mass spectroscopy (HPLC-MS), and quadrupole time-of-flight (Q-TOF) ESI-MS/MS data. The lipopeptide, named GB16-BS, completely inhibited the growth of Pythium aphanidermatum, Rhizoctonia solani, Penicillium sp., and Botrytis cineria at concentrations of 10 and 50 mg/L, respectively. A novel method to prevent the foaming and to provide oxygen was developed. During the production of surface active agent, such as lipopeptide (surfactin), large amount of foam was produced by aeration. This resulted in the carryover of cells to the outside of the fermentor, which leads to the significant loss of cells. Instead of using cell-toxic antifoaming agents, low amount of hydrogen peroxide was added. Catalase produced by cells converted hydrogen peroxide into oxygen and water. Also addition of corn oil as an oxygen vector as well as antifoaming agent was attempted. In addition, Ca-stearate, a metal soap, was added to enhance the antifoam activity of com oil. These methods could prevent the foaming significantly and maintained high dissolved oxygen in spite of lower aeration and agitation. Using these methods, high cell density, could be achieved with increased lipopeptide productivity. In conclusion to produce an effective biological control agent for soil-borne infectious disease, following strategies were attempted i) effective screening of antagonist by including surface tension as an important decision factor ii) identification of antifungal compound produced from the isolated strain iii) novel oxygenation by $H_2O_2-catalase$ with vegetable oil for antifungal lipopeptide production.

  • PDF