• 제목/요약/키워드: Sedimentation Efficiency

검색결과 202건 처리시간 0.032초

Vortex separator와 연속식 섬유사여과를 이용한 CSOs 처리연구 (A Study on Treatment of CSOs by Vortex Separator and Continuous Fiber-Filter System)

  • 이범준;나지훈;김진성;주재영;배윤선;정인호;박철휘
    • 상하수도학회지
    • /
    • 제24권4호
    • /
    • pp.443-451
    • /
    • 2010
  • This study was conducted to confirm the CSOs characteristics, and to estimate treatment efficiency of CSO treatment process. Flowrate was average $53,500m^3$/d, maximum $58,100m^3$/d during dry season, but after rain-fall, the flowrate was increased more than twice that of the dry season. And, water pollution concentrations, such as $COD_{Cr}$, SS, $BOD_5$, TN and TP of after rain-fall, were also increased. Thus, for more efficient treatment of pollutants during rainy season, The vortex separator and continuous fiber filter devices were used. From the results on particle range, removal efficiency of particle was 99.7% at the particle size range of $40{\sim}100{\mu}m$ but decreased as 55-80% at the below $40{\mu}m$. The removal efficiencies of $COD_{Cr}$, SS, TN and TP were approx. 70, 60, 70 and 50, respectively during the dry season and approx. 50, 50, 8 and 18% during the rainy season. Also, when compared with the primary sediment basin, $COD_{Cr}$, SS, TN and TP removal efficiencies were high. especially, at the case of TN and TP, TN was more removed than TP because of higher conversion factor value. But we needed more study for the injection of a coagulants to get more stable treatment efficiency for soluble pollutants. Consequently, This process can be used for CSOs treatment as well as replace the primary sedimentation basin during the dry season.

입자분리효율을 높이기 위한 새로운 기술 (New Technologies for Enhancing Particles Separation Efficiency in Coagulation and Filtration)

  • Kunio, Ebie;Jang, Il-Hun
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.254-269
    • /
    • 2004
  • Polysilicato-iron coagulant (PSI) is receiving attention in Japan as a substitute for aluminum-based coagulants. In the first part of this article, coagulation, sedimentation and filtration experiments were carried out using kaolin clay particles as the turbidizing material and four types of PSI with various molar ratios of polysilicic acid to ferric chloride (Si/Fe ratio). Results demonstrate that use of a PSI with a high Si/Fe ratio can cause a more dramatic decrease in treated water turbidity but a higher suction time ratio (STR) than when PACl is used. However, optimization by increasing the rapid agitation strength GR is found to greatly improve the STR. In addition, the series of filtration experiments verified that optimization of GR is greatly effective in controlling rapid increases in filter head loss, and also formation of a thin aging layer in the upper part of the filter bed by slow-start filtration is effective in improving filtered water turbidity over the entire filtration process. The second part of this article describes two innovative filtration techniques to increase the particle separation efficiency; (1) coagulant-coated filter medium by enhancing the electrical potential of the surface of the filter medium, and (2) coagulant dosing in influent by controlling the electrical potential of particles entering the filter layer. From the results of the various filtration experiments using a pilot plant, these two techniques were found to be very effective to reduce the effluent water turbidity from the start to the end of a filter run. Moreover, in the filtration experiments using these two methods simultaneously, higher removal efficiency of approximately 3-log (99.7%) was realized, resulting that the finished water turbidity was accordingly reduced to 0.004mg/L.

미세조류 분리/회수를 위한 세포외 고분자물질 생물 응집제 활용 (Application of extracellular polymeric substances (EPSs)-bioflocculant for recovery of microalgae)

  • 최오경;;김종락;맹승규;김극태;이재우
    • 상하수도학회지
    • /
    • 제35권1호
    • /
    • pp.63-69
    • /
    • 2021
  • Microalgae are primary producers of aquatic ecosystems, securing biodiversity and health of the ecosystem and contributing to reducing the impact of climate change through carbon dioxide fixation. Also, they are useful biomass that can be used as biological resources for producing valuable industrial products. However, harvesting process, which is the separation of microalgal biomass from mixed liquor, is an important bottleneck in use of valorization of microalgae as a bioresource accounting for 20 to 30% of the total production cost. This study investigates the applicability of sewage sludge-derived extracellular polymeric substance (EPS) as bioflucculant for harvesting microalgae. We compared the flocculation characteristics of microalgae using EPSs extracted from sewage sludge by three methods. The flocculation efficiency of microalgae is closely related to the carbohydrate and protein concentrations of EPS. Heat-extracted EPS contains the highest carbohydrate and protein concentrations and can be a best-suited bioflocculant for microalgae recovery with 87.2% flocculation efficiency. Injection of bioflocculant improved the flocculation efficiency of all three different algal strains, Chlorella Vulgaris, Chlamydomonas Asymmetrica, Scenedesmus sp., however the improvement was more significant when it was used for flocculation of Chlamydomonas Asymmetrica with flagella.

정수처리 공정에서 Cryptosporidium Tracer의 제거효율 (Removal Efficiency of Cryptosporidium Tracer in Drinking Water Treatment Process)

  • 이순화;김윤희
    • 대한환경공학회지
    • /
    • 제28권12호
    • /
    • pp.1304-1309
    • /
    • 2006
  • 정수처리 과정에서 Cryptosporidium과 유사한 특성을 가지고 있는 C. tracer를 이용하여 공정별 제거효율을 조사하였다. PACI(Poly aluminium chloride, $Al_2O_3$(10%)) 주입량이 10 mg/L일 때 C. tracer는 97.16%로 가장 높은 제거율을 보였으며, 탁도 제거율과 SS 제거율이 높을수록 C. tracer 응집 효율이 높았다. 원수의 pH가 높을수록 C. tracer 제거율이 증가 하였으며 응집 침전 후의 유출수 탁도와 C. tracer 제거율과의 상관성이 $R^2=0.9506$로 높게 나타나 응집 침전 후의 유출수 탁도로 Cryptosporidium 제거 효율을 평가할 수 있음을 알 수 있었다. 또한 여과 실험에서는 유입 탁도에 따른 C. tracer 제거율은 $94.00{\sim}95.83%$ 범위였으며 유출수 탁도와 C. tracer 제거율과의 상관성은 $R^2=0.8704$였다. 최적 응집 조건 하에서 여과수 탁도가 양호할 경우, 예상되는 Cryptosporidium의 제거율은 응집 침전의 경우 1.55 log(97.16%), 급속모래여과의 경우 1.38 log(95.83%), 응집 침전+급속모래여과의 경우 2.31 log(99.51%)로 나타났다.

플럭크기를 이용한 응집공정 진단에 관한 연구 (Study of the Floc Size Distribution for the Efficiency Assessment of Flocculation Process in Water Works)

  • 정진홍;최계운;박재로
    • 한국산학기술학회논문지
    • /
    • 제15권12호
    • /
    • pp.7438-7442
    • /
    • 2014
  • 정수처리공정 중 응집공정의 효율을 평가하기 위하여 Floc Size 분포를 분석하여 응집공정의 효율 평가를 수행하였다. 응집 효율은 탁도를 기준으로 평가하는 방법보다 응집 상태를 직접 평가하는 Floc의 크기 및 개수를 분석하여 정량화하는 기법을 제시하였다. 원수의 탁도 분포에 따른 Floc의 성장 상태를 분석하였다. 응집지에서 원수 탁도가 5.0 NTU 내외로 유입되었을 경우 응집지 각 단의 G값이 각각 50 sec-1,, 30 sec-1, 10 sec-1일 때 효율이 가장 높게 나타났으며, 원수 탁도가 263 NTU로 유입되었을 경우 G값을 각각 65 sec-1, 40 sec-1, 10 sec-1으로 운전한 경우 효율이 가장 높게 나타났으며, 이때 $1200{\mu}m$ 이상의 Floc 개수는 약 14개로 분석되었다. G값에 따라 응집효율을 평가할 수 있는 지표인자로 Floc의 크기 및 개수로 공정 진단 수행이 가능할 것으로 판단된다.

산 오염수 전처리용 침전 및 중화 특성 (Characterization of Sedimentation and pH Neutralization as Pretreatment of Acid Contaminated Water)

  • 임종도;이상빈;박재우
    • 한국지반환경공학회 논문집
    • /
    • 제23권9호
    • /
    • pp.33-40
    • /
    • 2022
  • 본 연구에서는 산 오염수 전처리를 위한 침전 및 중화 공정에 대해 연구하였다. 침전 및 중화 공정은 오염물질 흡착, 휘발, 생분해 혹은 산화 등과 같은 제거공정 전에 필요한 전처리 공정으로 좀 더 효과적인 제거효율을 도출해 내기 위함이다. 침전 공정에선 일반적인 퇴적토인 부산 감천항의 퇴적토를 이용하여 침강 속도, 입자 균등계수, 곡률계수 및 입도지수를 파악하였고, 이를 위해 스테인리스 스틸로 구성된 표준체 판을 사용하였다. 각 표준체의 망 단위는 4, 10, 20, 40, 80, 100, 200이며 조립된 체 상부에 건조된 퇴적토를 투하시킨 후 진동을 가하여 입경별로 분류하였다. 입경별로 분류한 건조퇴적토는 1L 크기의 임호프콘(Imhoff cone)과 200mL 메스실린더에 침강시켰다. 각 입경별 침강속도를 구한 후 스토크스의 법칙(Stokes' law)에 따라 입자의 밀도를 계산하였다. 그 결과, 사용된 건조퇴적토의 평균 입자밀도는 1.93g/cm3였으며 침강속도가 가장 낮은 값은 0.11cm/s이였다. 침강속도와 입자 밀도를 통하여 화학사고 시 입자의 침전 위치나 퇴적 가능한 범위를 알아 대비할 수 있다. 중화 공정의 경우 강한 산성을 지니고 있는 질산과 황산을 사용하였고 중화제로 수산화나트륨과 산화칼슘을 사용하였다. 질산과 황산의 산도는 2, 3, 4, 5로 선정하였고 수산화나트륨과 산화칼슘(0.1, 0.01, 0.001M)를 사용하여 중화제 사용량이 pH 7의 조건을 맞췄을 때 5v/v% 미만으로 나올 수 있는 값을 도출하였다. 가장 농도가 높은 0.1M의 중화제의 경우 가장 낮은 pH 2를 제외하고 모두 5v/v% 미만으로 충족시켰고, 0.01M의 중화제는 일부 pH에서만 충족되었으며, 농도가 가장 낮은 0.001M의 중화제는 모든 pH에서 5v/v% 미만의 조건을 충족시키지 못 하였다. 질산과 황산 모두 산화칼슘이 수산화나트륨 보다 더 적은 부피비를 차지하였고 중화에 적합한 효과를 도출하였다.

전산유체역학를 이용한 급속혼화공정 교반효과 및 유동 평가 (Evaluation of the mixing and Hydrodynamic Behavior in rapid mixing stage on using Computational Fluid Dynamics)

  • 조영만;유수전;유평종;김대영;황보봉형
    • 상하수도학회지
    • /
    • 제23권6호
    • /
    • pp.799-810
    • /
    • 2009
  • With time, the stable management of turbidity is becoming more important in the water treatment process. So optimization of coagulation is important for the improvement of the sedimentation efficiency. we evaluated the mixing and hydrodynamic behavior in the coagulation basin using Computational Fluid Dynamics (CFD). The items for evaluation are a location and the speed of agitator and angle of an injection pipe. The results of the CFD simulation, the efficacy of mixing in the coagulation basin was not affected according to one or two injection pipe and angle of an injection pipe. If there is a agitator near outlet of coagulation basin, the efficacy of mixing don't improve even though the speed of agitator increase. So location of agitator is perfect when it locate center at the inlet stream. The coagulation basin at this study, the proper speed of agitator is form 20rpm to 30rpm.

열처리를 통한 제올라이트 박막 코팅 시 바인더의 영향 (The Effect of the Binder to Zeolite Thin Film Coating by Heat Treatment)

  • 유영석;조준호;김이태
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.277-282
    • /
    • 2013
  • This study is an experimental attempt to confirm the binder effect of zeolite coating on glass plate by heat treatment. As a result, zeolite was successfully formed with low concentratios of pressure, whose concentration was effective in 10% or more for thin film zeolite coating. And as the content of the binder (TEOS) in mixed coating solution was higher, the zeolite was fastened better on the surface. Above 5% content of the binder in the coating solution, TEOS hindered zeolite synthesis of the precursor and brought to zeolite capacity decrease. Furthermore, when the concentration of the precursor, sedimentation rate of the precursor was higher and the coating efficiency is reduced thereby. Therefore, the most effective concentrations of the precursor and TEOS in the coating solution was 10% and 5%, respectively. It was concluded that zeolite coating is produced by heat treatment method after dipping without hydrothermal synthesis.

응집효율 향상을 위한 수직형 교반기의 유동특성 연구 (A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency)

  • 김진훈;박종호
    • 한국유체기계학회 논문집
    • /
    • 제8권3호
    • /
    • pp.33-41
    • /
    • 2005
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard $k-{\epsilon}$ Model and a computational fluid dynamics (CFD) simulation program-FLUENT. The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floe formation at conventional water treatment plants in Korea. As a result of the CED solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type-II (Angle $15{\sim}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

Dexamethasone Release from Glutaraldehyde Cross-Linked Chitosan Microspheres: In Vitro/In Vivo Studies and Non-Clinical Parameters Response in Rat Arthritic Model

  • Dhanaraju, Magharla Dasaratha;Elizabeth, Sheela;Poovi, Ganesan
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권5호
    • /
    • pp.279-288
    • /
    • 2011
  • The Dexamethasone (DEX) loaded chitosan microspheres were prepared by thermal denaturation and chemical cross-linking method using a dierent concentration of glutaraldehyde as chemical cross-linking agent. The prepared microspheres were evaluated for the percentage of Drug Loading (DL), Encapsulation Efficiency (EE) and surface morphology by Scanning Electron Microscopy (SEM). DL and EE were found to be maximum range of 10.0 to 10.79 % and 58.19 to 64.73 % respectively. The SEM Photographs of the resultant microspheres exhibited fairly smooth surfaces and predominantly spherical in appearance. In addition, Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) shown that there was no interaction between the drug and polymer. In vitro and in vivo release studies revealed that the release of dexamethasone was sustained and extended up to 63 days and effectively controlled by the extent of cross-linking agent. Non-clinical parameters such as paw volume, hematological parameters like Erythrocyte Sedimentation Rate (ESR), Paced Cell Volume (PCV), Total Leucocytes Count (TLC), Hemoglobin (Hb), Differential Cell Count (DCC) were investigated in Fruend's Complete Adjuvant (FCA) induced arthritic rats. Radiology and histopathological studies were also performed in order to evaluate the therapeutic efficacy of the DEX-loaded microspheres in extenuating the rat arthritic model.