• Title/Summary/Keyword: Sediment quality

Search Result 593, Processing Time 0.033 seconds

Development of a Real-Time Water Quality Monitoring System using Coastal Passenger Ships and PCS Telemetry

  • Jin, Jae-Youll;Park, Jin-Soon;Lee, Jong-Kuk;Park, Kwang-Soon;Lee, Dong-Young;Yum, Ki-Dai
    • Ocean and Polar Research
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 1999
  • To meet increasing needs for environmentally sustainable management of coastal area, there has been compelling pressure to establish a cost-effective and long-term coastal water quality (CWQ) monitoring system. A remote CWQ monitoring system, STAMP, has been developed and is in operation along the route between Kyema harbor and Anma Island in the southwestern coastal area of Korea. STAMP uses a PCS phone as a telemetry unit to transmit acquired data for monitoring general water quality parameters, and a routinely operating coastal passenger ship or car ferry. STAMP has various merits of low-cost operations; long-term monitoring with secure instrumentation; and stable real-time telemetry of acquired data with-out the loss and noise. It is expected that the system will serve as a very useful tool in the CWQ managing programs of Korea taking the advantage of many coastal passenger ships in various routes including the ships departing from the coastal industrial cities. The acquired data compiled on suspended surface sediment concentrations (SSSC) will be also valuably helpful in understanding the sediment budget across the routes of the vessel.

  • PDF

Characterization of Water and Sediment Environment in Water Shield (Brasenia schreberi) Habitats (순채 생육지에서 수체와 저토의 환경요인 분석)

  • Kim, Yoon-Dong
    • The Korean Journal of Ecology
    • /
    • v.19 no.3
    • /
    • pp.209-216
    • /
    • 1996
  • In order to identify the habitat characteristics of water shield (Brasenia schreberi), water quality and sediment characters were investigated. Water shield had peculial habitats such as old reservoir, developed basin-like reservior, a water depth within 1.5 m, constant water level, and thick sediment layer at the bottom. The species had very dense populations under the favorable growing conditions and occasionally grew together with Utricularia japonica. When water shield decreased, Nelumbo nucifera, Nuphar japonicum and Zizania latifolia increased. Natural populations of water shield need protection because it is endangered by the human activities and their harvest. The optimal conditions for the growth of water shield was near neutral pH. low conductivity and low turbidity. Therefore the input of pollutants should be controlled for its growth. The inorganic ion contents such as K, Mg, and Na were higher in the water shield growing area. Especially iron content of the sediments in the reservoirs with water shield was nearly five times as high as that in the reservoirs without water shield. thus iron might be one of the major limiting factors for the growth. It was considered that molybdenum can be another major factor because water shield is a nitrogen fixing plant.

  • PDF

Analysis of SWAT Simulated Errors with the Use of MOE Land Cover Data (환경부 토지피복도 사용여부에 따른 예측 SWAT 오류 평가)

  • Heo, Sung-Gu;Kim, Nam-Won;Yoo, Dong-Sun;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.194-198
    • /
    • 2008
  • Significant soil erosion and water quality degradation issues are occurring at highland agricultural areas of Kangwon province because of agronomic and topographical specialities of the region. Thus spatial and temporal modeling techniques are often utilized to analyze soil erosion and sediment behaviors at watershed scale. The Soil and Water Assessment Tool (SWAT) model is one of the watershed scale models that have been widely used for these ends in Korea. In most cases, the SWAT users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. Spatial and temporal resolutions of the MOE land cover data are not good enough to reflect field condition for accurate assesment of soil erosion and sediment behaviors. Especially accelerated soil erosion is occurring from agricultural fields, which is sometimes not possible to identify with low-resolution MOD land cover data. Thus new land cover data is prepared with cadastral map and high spatial resolution images of the Doam-dam watershed. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. These EI values were greater than those with MOE land cover data. With newly prepared land cover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2 (165.9 ton/ha/year with the MOE land cover data and 25.6 ton/ha/year with new land cover data developed in this study). The results obtained in this study implies that the use of MOE land cover data in SWAT sediment simulation for the Doam-dam watershed could results in 70.7% differences in overall sediment estimation and incorrect identification of sediment hot spot areas (such as subwatershed #2) for effective sediment management. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

  • PDF

Experimental Study for Flushing of Sediment Bypass Pipe underneath Rubber Weir (고무보 저층수 배출관의 유사 배제 성능 실험 연구)

  • Jeong, Seok Il;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.133-140
    • /
    • 2016
  • Most small weir installed in Korea is concrete solidated weir. Fixed weir causes stagnant flow, which leads to deposit sediment just upstream of weir. As time goes on, it would induce reduction of water storage capacity and invoke the serious water quality issues. Therefore, there has been a growing interest in movable weir. Especially, the flexible rubber weir is easy to install and possible to operate in extreme environments. However, even though this type can be flatable, it is also not free from sediment deposition problem. Thus, to enhance the ability of releasing deposition the bypass pipe was constructed underneath it. In this study the performance of its ability was examined with hydraulic model test. This bypass pipe was designed with 3 different dimensions to connect between each bottom of upstream and downstream of a weir, such as Type A, B, and C. The efficiency of drainage of deposition upstream was studied under two water of upstream and sediment heights. In addition, the ability of sediment emission through the bypass pipe after the pipe was blocked by debris like soil, vegetation et al. was examined by video monitoring. From this study, it was suggested a dimensionless equation which show the relationship of variable parameters and amount of emission sediment through bypass pipe. And it was found that the most significant factors on efficiency of releasing were elbow angle and discharge, and the ability of emission when the pipe was blocked was most highly influenced in tilting length.

Modeling of Water Circulation and Suspended Sediment Transport in Lake Daecheong (대청호내 흐름 및 유입 부유사 확산 모델링)

  • Jung Tae Sung;Hwang Jung Hwa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.67-82
    • /
    • 2003
  • A 2-dimensional hydrodynamic model has been applied to understand water circulation pattern in Lake Deacheong. The simulation results have been used in sediment transport modeling. A sediment transport model using a particle tracking method has been developed to simulate sediment transport in the ocean, river and reservoir. The model was applied to estimate transport track of particulate pollutants in the lake. The hydrodynamic model was verified for water level variations and showed good agreements. Through the results we found out that water velocity is less than 5 cnysec for mean yearly flow and more than 120 cnysec at some points for the simulated flood flow. The incoming sediment particles in flood season reached into the Daecheong Dam. But the incoming sediment particles in the mean flow were settled down at riverbed and didn't move into the dam. These results can be used in setting up water quality management plan in the lake.

  • PDF

Evaluation of Modeling Approach for Suspended Sediment Yield Reduction by Surface Cover Material using Rice Straw at Upland Field (모델링 기법을 이용한 밭의 볏짚 지표피복의 부유사량 저감효과 평가 방법)

  • Park, Youn Shik;Kum, Donghyuk;Lee, Dong Jun;Choi, Joongdae;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.108-114
    • /
    • 2016
  • Sediment-laden water leads to water quality degradation in streams; therefore, best management practices must be implemented in the source area to control nonpoint source pollution. Field monitoring was implemented to measure precipitation, direct runoff, and sediment concentrations at a control plot and straw-applied plot to examine the effect on sediment reduction in this study. A hydrology model, which employs Curve Number (CN) to estimate direct runoff and the Universal Soil Loss Equation to estimate soil loss, was selected. Twenty-five storm events from October 2010 to July 2012 were observed at the control plot, and 14 storm events from April 2011 to July 2011 at the straw-applied plot. CN was calibrated for direct runoff, and the Nash-Sutcliffe efficiency and coefficient of determination were 0.66 and 0.68 at the control plot. Direct runoff at the straw-applied plot was calibrated using the percentage direct runoff reduction. The estimated reduction in sediment load by direct runoff reduction calibration alone was acceptable. Therefore, direct runoff-sediment load behaviors in a hydrology model should be considered to estimate sediment load and the reduction thereof.

MODELING LONG-TERM PAH ATTENUATION IN ESTUARINE SEDIMENT, CASE STUDY: ELIZABETH RIVER, VA

  • WANG P.F;CHOI WOO-HEE;LEATHER JIM;KIRTAY VIKKI
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.1189-1192
    • /
    • 2005
  • Due to their slow degradation properties, hydrophobic organic contaminants in estuarine sediment have been a concern for risks to human health and aquatic organisms. Studies of fate and transport of these contaminants in estuaries are further complicated by the fact that hydrodynamics and sediment transport processes in these regions are complex, involving processes with various temporal and spatial scales. In order to simulate and quantify long-term attenuation of Polycyclic Aromatic Hydrocarbons (PAH) in the Elizabeth River, VA, we develop a modeling approach, which employs the U.S. Environmental Protection Agency's water quality model, WASP, and encompasses key physical and chemical processes that govern long-term fate and transport of PAHs in the river. In this box-model configuration, freshwater inflows mix with ocean saline water and tidally averaged dispersion coefficients are obtained by calibration using measured salinity data. Sediment core field data is used to estimate the net deposition/erosion rate, treating only either the gross resuspension or deposition rate as the calibration parameter. Once calibrated, the model simulates fate and transport PAHs following the loading input to the river in 1967, nearly 4 decades ago. Sediment PAH concentrations are simulated over 1967-2022 and model results for Year 2002 are compared with field data measured at various locations of the river during that year. Sediment concentrations for Year 2012 and 2022 are also projected for various remedial actions. Since all the model parameters are based on empirical field data, model predictions should reflect responses based on the assumptions that have been governing the fate and sediment transport for the past decades.

  • PDF

Control of the Sediment in a Combined Sewer Using a Separation Wall

  • Lim, Bong Su;Kwon, Chung Jin;Kim, Do Young;Lee, Kuang Chun
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.71-75
    • /
    • 2013
  • This study is to evaluate the effects of the separation wall on the sediment quality and quantity in a combined sewer, by surveying the sewer overflow and sediments during a rainfall. Since the separation wall installed in the combined sewer separates the rainfall and the sewage, the flow rate of the sewage is increased, and the amount of the sediment deposited on the sewer is decreased. One sampling point was the outfall of Daesacheon with a separation wall, and the other was the outfall of Gwaryecheon without a separation wall, in Daejeon metropolitan city. The maximum control of the biochemical oxygen demand (BOD) overflow load was more than 38% in the Daesacheon point with the separation wall, during a rainfall of 0.11 mm/hr. The maximum control of the BOD overflow load was 24% in Gwaryecheon without a separation wall, during a rainfall of 1.0 mm/hr. According to the survey results of the sediment in the sewer, the discharged sediment deposited on the sewer in Gwaryecheon point was about 23% to 28% of the total suspended solid during the rainfall. In addition, the average velocity of sewage in the presence of sediment was about 0.30 m/s, and if the separation wall is installed, it was expected to be about 1.01 m/s, that is 3.4 times more than the same conditions, resulting in the reduction of the sediment deposit.

Development of GIS System for the Monitering of the Riverbed Sediment on Dam Reservoir (댐저수지 하상의 퇴적물 관리를 위한 GIS 시스템 개발)

  • Park, Joon-Kyu
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.11a
    • /
    • pp.33-45
    • /
    • 2006
  • The interest of sediment has been increased daily because most of domestic dam reservoir's operation time have been extended and wide basin area is the main characteristics for artificial reservoir which the speed of water flow in artificial reservoir is slower than that of natural reservoir. Therefore a lot of sediment has been significantly accumulated. In this study, the accurate topographic data were obtained using echo-sounding system. GPS survey, low-frequency sub-bottom profiler, and high-frequency echo-sounding system were used to compute the exact amount of sediment. Based on the results, DEM(Digital Elevation Model) and DSM(Digital Surface Model) were generated. The GIS system for the management of sediment was created based on topographic data on the riverbed and this system can be efficiently used for the management of sediment which caused the problems of reservoir capacity and water quality.

  • PDF

Health Risks to Children and Adults Residing in Riverine Environments where Surficial Sediments Contain Metals Generated by Active Gold Mining in Ghana

  • Armah, Frederick Ato;Gyeabour, Elvis Kyere
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.69-79
    • /
    • 2013
  • The purpose of this study was to investigate the current status of metal pollution in the sediment from rivers, lakes, and streams in active gold mining districts in Ghana. Two hundred and fifty surface sediment samples from 99 locations were collected and analyzed for concentrations of As, Hg, Cr, Co, Cu, Fe, Zn, Pb, Cd, Ni, and Mn using inductively coupled plasma-mass spectroscopy (ICP-MS). Metal concentrations were then used to assess the human health risks to resident children and adults in central tendency exposure (CTE) and reasonable maximum exposure (RME) scenarios. The concentrations of Pb, Cd, and As were almost twice the threshold values established by the Hong Kong Interim Sediment Quality Guidelines (ISQG). Hg, Cu, and Cr concentrations in sediment were 14, 20, and 26 times higher than the Canadian Freshwater Sediment Guidelines for these elements. Also, the concentrations of Pb, Cu, Cr, and Hg were 3, 11, 12, and 16 times more than the Australian and New Zealand Environment and Conservation Council (ANZECC) sediment guideline values. The results of the human health risk assessment indicate that for ingestion of sediment under the central tendency exposure (CTE) scenario, the cancer risks for child and adult residents from exposure to As were $4.18{\times}10^{-6}$ and $1.84{\times}10^{-7}$, respectively. This suggests that up to 4 children out of one million equally exposed children would contract cancer if exposed continuously to As over 70 years (the assumed lifetime). The hazard index for child residents following exposure to Cr(VI) in the RME scenario was 4.2. This is greater than the United States Environmental Protection Agency (USEPA) threshold of 1, indicating that adverse health effects to children from exposure to Cr(VI) are possible. This study demonstrates the urgent need to control industrial emissions and the severe heavy metal pollution in gold mining environments.