• Title/Summary/Keyword: Sediment property

Search Result 61, Processing Time 0.028 seconds

Acoustic Property of Sandy Sediment in the Korea Strait Using Sediment Sound Velocimeter (퇴적물속도측정기를 이용한 대한해협 사질퇴적물의 음향특성)

  • 서영교;김대철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.77-85
    • /
    • 2000
  • Laboratory determinations of acoustic and physical properties in Korea Strait sediment were carried out. Sediment sound velocimeter(SSV) was employed to measure the sound velocity of sandy sediment. Distribution patterns of the acoustic and physical properties are controlled by sediment texture. The study area is divided into three provinces(mid-shelf, shelf margin and enough) based on the acoustic and physical properties. This classification matches well with the previous result[14] based on the systems tracks and depositional systems. We suggest a geoacoustic model of the Korea Strait that replacing the old model of Briggs and Fisher[5].

  • PDF

Soil Quality Assessment for Environmentally Sound Agriculture in the Mountainous Soils - Physical Properties of the Soil and Collection of Sediment Data - (산지에서의 환경보전형 농업을 위한 토양의 질 평가 -토양의 물리적 특성과 유사자료 수집 -)

  • 최중대;김정제;양재의;정진철;윤세영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.85-93
    • /
    • 1998
  • In the 2nd year study of a 5 year project to evaluate the soil quality and develop the best management practices for mountaineous soils, 11 runoff plots were treated and monitored with respect to physical property of the soil, runoff and sediment discharge, and the following results were obtained. 1. Bulk density and porosity did not show any siginificant difference between experimental treatments. 2. Runoff was basically dependent on the soil's physical property and tillage. Up-and-down plots showed the highest runoff while contour plots the lowest runoff. 3. Sediment yield in the mountaineous soils was directly related to tillage and residue cover. Residue covered plots showed the lowest sediment yield and up-and-down plots the highest sediment yield. And it is recommended that the best management practices using till_age and residue cover for the mountaineous soils must be developed to protect soil quality and maintain agricultural productivity.

  • PDF

Physical Properties and Facies of the Sand Ridge Sediment, South Sea of Korea (남해 Sand ridge 퇴적물의 퇴적상과 물리적 특성)

  • CHON Hee-Jeong;SEO Yong-Kyo;KIM Dae-Choul;KIM Jeng-Chang;KEENE Jock
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.609-621
    • /
    • 1998
  • Sand ridges in the South Sea of Korea have been investigated to reveal the surface morphology and vortical variation in sediment physical property. Both field and laboratory methods such as high resolution subbottom profiling, side scan sonar, and physical property and sediment textural study on cored sediments were employed. Asymmetric sand waves are found on the ridge, No prominent difference in the sediment was recorded throughout the ridge area. Sediment sorting is generally poor due to interbedded mud. Average compressional wave velocity is 1753 m/sec for the sand dominated core section, Most of cores show two prominent facies: facies A and B. Facies A is defined as modern mud sediment and B is dominated by relict sand. Facies B is characterized by gravel, sand, and shell fragment, It is suggested that the facies B was developed in transgressive environment by tide and sporadic high energy events.

  • PDF

Enhanced vertical diffusion coefficient at upper layer of suspended sediment concentration profile

  • Kim, Hyoseob;Jang, Changhwan;Lhm, Namjae
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.289-295
    • /
    • 2012
  • Assume fluid eddy viscosity in the vertical direction is parabolic. Sediment particles diffuse with the given fluid eddy viscosity. However, when the vertical diffusion coefficient profile is computed from the suspended sediment concentration profile, the coefficient shows lager values than the fluid mixing coefficient values. This trend was explained by using two sizes of sediment particles. When fine sediment particles like wash load are added in water column the sediment mixing coefficient looks much larger than the fluid mixing coefficient.

Reduction Method of Shoaling of Navigation Channel Using Composite Channel Slope (복단면 항로를 이용한 항로매몰 저감공법)

  • 배기성;김규한;백승화
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.233-240
    • /
    • 1995
  • A large part of shoaling of navigation channel surrounded by fine sand is caused by suspended sediment in non-equilibrium state. We develop a numerical model for predicting shoaling of navigation channel where concentration of suspended sediment in such state is accurately simulated. In this study, effects of channel geometry on the shoaling of the channel are investigated numerically. A composite slope of navigation channel is also proposed to reduce non-equilibrium property of suspended sediment. It is found that the composite slope can effectively reduce non-equilibrium property of suspended sediment and the amount of sediment deposited in the main channel.

  • PDF

Effectiveness of external agents in polluted sedimentary area

  • Alam, Md. Mahabub;Haque, Md. Niamul;Cho, Daechul;Kwon, Sung-Hyun
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.52-57
    • /
    • 2016
  • Sediment is a useful natural source but deteriorated continually by anthropogenic and industrial sources. Therefore, it is imperative to search a suitable method for improving or restoring sediment quality. Sediment has been tested to identify the effects of some external agents on a polluted area for 28 days. Chemical analysis and total viable counts (TVC) test have been conducted for 4 days interval to assess their performance. The analyses of chemical oxygen demand (COD), acid volatile sulfide (AVS), total phosphorous (T-P), total nitrogen (T-N) indicate that the chemical agents was more efficient to improve sediment quality whereas the microbial agent was more efficient for nutrient releasing from sediment. Oxygen releasing property of the chemical agent was thought to be providing with more congenial environment for the higher growth of the bacterial community than the direct application of microbial agents.

Prediction of Outflow Hydrograph caused by Landslide Dam Failure by Overtopping

  • Do, XuanKhanh;Kim, Minseok;Nguyen, H.P.T;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.196-196
    • /
    • 2016
  • Landslide dam failure presents as a severe natural disaster due to its adverse impact to people and property. If the landslide dams failed, the discharge of a huge volume of both water and sediment could result in a catastrophic flood in the downstream area. In most of previous studies, breaching process used to be considered as a constructed dam, rather than as a landslide dam. Their erosion rate was assumed to relate to discharge by a sediment transport equation. However, during surface erosion of landslide dam, the sediment transportation regime is greatly dependent on the slope surface and the sediment concentration in the flow. This study aims to accurately simulate the outflow hydrograph caused by landslide dam by overtopping through a 2D surface flow erosion/deposition model. The lateral erosion velocity in this model was presented as a function of the shear stress on the side wall. The simulated results were then compared and it was coherent with the results obtained from the experiments.

  • PDF

A Study on Distribution Property of Micropollutants in Gwang-Yang Bay Sediment (광양만 저질에서의 미량오염물질 분포특성에 관한 연구)

  • Han Sang-Kuk;Park Ji-Young
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.643-651
    • /
    • 2006
  • This study investigated the distributive property of micropollutants in sediment around Gwang-yang bay using simultaneous analytical method of 310 chemicals. In the results, the major micropollutants detected were CH type chemicals such as aliphatic, polycyclic compounds, benzenes, and CHN(O) type chemicals aromatic amines, and pesticides. Insecticides of pesticide type were frequently detected at all sampling site. The total concentration of micropollutants were higher in summer than in winter and measured within the range of $ND{\sim}36.50{\mu}g/L$. Also, because of effect of seomjin river, GY6 of all sampling site detected by the highest concentration, GY10 and 11 located in Gwang-yang outside bay were not detected the micropollutants. From the result of this study, we should estimated that the industrial complex located in Gwang-yang inside bay and an inflow of fresh water through the Seomjin river are major pollution sources of Gwang-yang bay.

Interpretation of Physical Properties of Marine Sediments Using Multi­Sensor Core Logger (MSCL): Comparison with Discrete Samples

  • Kim, Gil-Young;Kim, Dae-Choul
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.166-172
    • /
    • 2003
  • Multi­Sensor Core Logger (MSCL) is a useful system for logging the physical properties (compressional wave velocity, wet bulk density, fractional porosity, magnetic susceptibility and/or natural gamma radiation) of marine sediments through scanning of whole cores in a nondestructive fashion. But MSCL has a number of problems that can lead to spurious results depending on the various factors such as core slumping, gas expansion, mechanical stretching, and the thickness variation of core liner and sediment. For the verification of MSCL data, compressional wave velocity, wet bulk density, and porosity were measured on discrete samples by Hamilton Frame and Gravimetric method, respectively. Acoustic impedance was also calculated. Physical property data (velocity, wet bulk density, and impedance) logged by MSCL were slightly larger than those of discrete sample, and porosity is reverse. Average difference between MSCL and discrete sample at both sites is relatively small such as 22­24 m/s in velocity, $0.02­-0.08\;g/\textrm{cm}^3$ in wet bulk density, and 2.5­2.7% in porosity. The values also show systematic variation with sediment depth. A variety of factors are probably responsible for the differences including instrument error, various measurement method, sediment disturbance, and accuracy of calibration. Therefore, MSCL can be effectively used to collect physical property data with high resolution and quality, if the calibration is accurately completed.

Vegetation Structure and Sediment Properties of Wondong Wetland in Nakdong-gang (낙동강 원동 습지의 식생 구조와 저토 특성)

  • Son, Sung-Gon;Lee, Pal-Hong;Kim, Cheol-Soo;Oh, Kyung-hwan
    • Journal of Wetlands Research
    • /
    • v.4 no.1
    • /
    • pp.21-31
    • /
    • 2002
  • Vegetation structure and sediment properties were investigated in the Wondong wetland of the Nakdong-gang, Yangsan-city, Gyeongsangnam-do, Korea. The vegetation type was classified into eleven communities based on the actual vegetation map: Miscanthus sacchariflorus community, Salix nipponica community, Phragmites communis community, Zizania latiofolia community, Trapa japonica community, Hydrilla verticillata community, Hydrocharis dubia community, Digitaria sanguinalis community, Nelumbo nucifera community, Phragmites japonica community, and Salix matsudana for. tortuosa community. Among them, Distribution area of Miscanthus sacchariflorus community was largest as 12.4 ha (36.3%). The dominant vegetation type was Miscanthus sacchariflorus community based on phytosocialogical method, and it was classified into two subcommunities; Persicaria maackiana - Miscanthus sacchariflorus subcommunity and Hydrilla verticillata - Miscanthus sacchariflorus subcommunity. Ranges of the sediment properties such as pH, conductivity, organic matter, total nitrogen, and available phosphorus were 4.9~6.2, $23{\sim}423{\mu}mho/cm$, 0.37~11.16%, 0.02~0.36% and 0.14~0.38mg/100g, respectively. Percentages of the partical size of the sediment such as clay, silt, and sand were 5.0~27.0%, 6.7~31.3%, and 46.7~88.3%, respectively.

  • PDF