• Title/Summary/Keyword: Security mechanisms

Search Result 396, Processing Time 0.025 seconds

Comparative Analysis and Validation of CSRF Defense Mechanisms in Spring Security and Apache Shiro (Spring Security와 Apache Shiro의 CSRF 공격 방어 기법 비교 분석 및 검증)

  • Jj-oh Kim;Da-yeon Namgoong;Sanghoon Jeon
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.79-87
    • /
    • 2024
  • This paper addresses the increasing cyber attacks exploiting security vulnerabilities in software due to the rise in web applications. CSRF (Cross-Site Request Forgery) attacks pose a serious threat to web users and developers and must be prevented in advance. CSRF involves performing malicious requests without the user's consent, making protection methods crucial for web applications. This study compares and verifies the CSRF defense performance of two frameworks, Spring Security and Apache Shiro, to propose an effectively applicable framework. The results show that both frameworks successfully defend against CSRF attacks; however, Spring Security processes requests faster, averaging 2.55 seconds compared to Apache Shiro's 5.1 seconds. This performance difference stems from variations in internal processing methods and optimization levels. Both frameworks showed no significant differences in resource usage. Therefore, Spring Security is more suitable for environments requiring high performance and efficient request processing, while Apache Shiro needs improvement. These findings are expected to serve as valuable references for designing web application security architectures

A Load Balancing and Security Scheme of Mobile Agents based on the mobile Trust Model (신뢰모델을 기반으로 한 이동 에이전트의 로드밸런싱과 에이전트 보호 기법)

  • Jung, Chang-Ryul;Lee, Sung-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2337-2344
    • /
    • 2013
  • Mobile Agent is an autonomous mobility technology is being applied in various fields. In particular, mobile agents execution in the Internet environment through the safe execution of the security must be guaranteed. Also, agent to run the agent, the agent's workload should be distributed. In this paper, a trust model based on the security mechanism of the agent execution is proposed. Proposed mechanism to ensure safe execution of the agent was not considered in existing relative researches for rational agent workload distribution and load balancing to improve throughput was. The proposed trust-based security mechanisms for agents to go through security analysis proved safe execution of the agent.

Secure and Energy-Efficient Join-Leave Operations in ZigBee Network

  • Kim, Bong-Whan;Park, Chang-Seop
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2874-2892
    • /
    • 2013
  • Since security plays an important role in several ZigBee applications, such as Smart Energy and medical sensor applications, ZigBee Specification includes various security mechanisms to protect ZigBee frames and infrastructure. Among them, the Join and Leave operations of ZigBee are investigated in this paper. The current Join-Leave operation is protected by the network key (a kind of group key). We claim it is not adequate to employ the network key for such purpose, and propose a new Join-Leave operation protected by the application link key (a kind of pairwise key), which is based on a more efficient key management scheme than that of ZigBee. Hence, the original Join operation consists of a total of 12 command frames, while the new Join operation consists of only 6 command frames. In particular, the security of the proposed Join-Leave operation is equivalent to or better than that of the original Join-Leave operation. The new Join-Leave operation is extensively analyzed in terms of security and efficiency, and compared with the original Join-Leave operation of ZigBee.

Attacks, Vulnerabilities and Security Requirements in Smart Metering Networks

  • Hafiz Abdullah, Muhammad Daniel;Hanapi, Zurina Mohd;Zukarnain, Zuriati Ahmad;Mohamed, Mohamad Afendee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1493-1515
    • /
    • 2015
  • A smart meter is one of the core components in Advanced Metering Infrastructure (AMI) that is responsible for providing effective control and monitor of electrical energy consumptions. The multifunction tasks that a smart meter carries out such as facilitating two-way communication between utility providers and consumers, managing metering data, delivering anomalies reports, analyzing fault and power quality, simply show that there are huge amount of data exchange in smart metering networks (SMNs). These data are prone to security threats due to high dependability of SMNs on Internet-based communication, which is highly insecure. Therefore, there is a need to identify all possible security threats over this network and propose suitable countermeasures for securing the communication between smart meters and utility provider office. This paper studies the architecture of the smart grid communication networks, focuses on smart metering networks and discusses how such networks can be vulnerable to security attacks. This paper also presents current mechanisms that have been used to secure the smart metering networks from specific type of attacks in SMNs. Moreover, we highlight several open issues related to the security and privacy of SMNs which we anticipate could serve as baseline for future research directions.

A study of keep the Secret information of Random Sized Images from using Indestructible Security

  • Woo, Seon-mi;Lee, Malrey;Lee, Hyang Ran
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • The information is to be considered as important part of any network, the communication nodes within network can able to communicate and transmit information by the means of configured LAN/WAN, or/and using internet technology. Thus, vast enhancement has been made in- exchanging of information over transmission media, this should be beneficial in various disciplines of modern client/server applications but at other side, several massive vulnerabilities have been directly/in-directly associated with them. To resolve the security issues, a security mechanism is proposed which hide the sensitive information of images before transmitting to networks. Random size image samples have used and encrypted to protect them from unauthorized entities. The encryption mechanism manipulates the sample images, and corresponding secret codes are generated which help to protect the images from adversaries. To provide an indestructible security mechanism, cryptography algorithms are deployed and considered as best solutions to keep the secret information of images.

An Interactive Multi-Factor User Authentication Framework in Cloud Computing

  • Elsayed Mostafa;M.M. Hassan;Wael Said
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.63-76
    • /
    • 2023
  • Identity and access management in cloud computing is one of the leading significant issues that require various security countermeasures to preserve user privacy. An authentication mechanism is a leading solution to authenticate and verify the identities of cloud users while accessing cloud applications. Building a secured and flexible authentication mechanism in a cloud computing platform is challenging. Authentication techniques can be combined with other security techniques such as intrusion detection systems to maintain a verifiable layer of security. In this paper, we provide an interactive, flexible, and reliable multi-factor authentication mechanisms that are primarily based on a proposed Authentication Method Selector (AMS) technique. The basic idea of AMS is to rely on the user's previous authentication information and user behavior which can be embedded with additional authentication methods according to the organization's requirements. In AMS, the administrator has the ability to add the appropriate authentication method based on the requirements of the organization. Based on these requirements, the administrator will activate and initialize the authentication method that has been added to the authentication pool. An intrusion detection component has been added to apply the users' location and users' default web browser feature. The AMS and intrusion detection components provide a security enhancement to increase the accuracy and efficiency of cloud user identity verification.

A PERFORMANCE IMPROVEMENT OF ANEL SCHEME THROUGH MESSAGE MAPPING AND ELLIPTIC CURVE CRYPTOGRAPHY

  • Benyamina Ahmed;Benyamina Zakarya
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • The vehicular ad hoc network (VANET) is currently an important approach to improve personal safety and driving comfort. ANEL is a MAC-based authentication scheme that offers all the advantages of MAC-based authentication schemes and overcomes all their limitations at the same time. In addition, the given scheme, ANEL, can achieve the security objectives such as authentication, privacy preservation, non-repudiation, etc. In addition, our scheme provides effective bio-password login, system key update, bio-password update, and other security services. Additionally, in the proposed scheme, the Trusted Authority (TA) can disclose the source driver and vehicle of each malicious message. The heavy traffic congestion increases the number of messages transmitted, some of which need to be secretly transmitted between vehicles. Therefore, ANEL requires lightweight mechanisms to overcome security challenges. To ensure security in our ANEL scheme we can use cryptographic techniques such as elliptic curve technique, session key technique, shared key technique and message authentication code technique. This article proposes a new efficient and light authentication scheme (ANEL) which consists in the protection of texts transmitted between vehicles in order not to allow a third party to know the context of the information. A detail of the mapping from text passing to elliptic curve cryptography (ECC) to the inverse mapping operation is covered in detail. Finally, an example of application of the proposed steps with an illustration

A cross-domain access control mechanism based on model migration and semantic reasoning

  • Ming Tan;Aodi Liu;Xiaohan Wang;Siyuan Shang;Na Wang;Xuehui Du
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1599-1618
    • /
    • 2024
  • Access control has always been one of the effective methods to protect data security. However, in new computing environments such as big data, data resources have the characteristics of distributed cross-domain sharing, massive and dynamic. Traditional access control mechanisms are difficult to meet the security needs. This paper proposes CACM-MMSR to solve distributed cross-domain access control problem for massive resources. The method uses blockchain and smart contracts as a link between different security domains. A permission decision model migration method based on access control logs is designed. It can realize the migration of historical policy to solve the problems of access control heterogeneity among different security domains and the updating of the old and new policies in the same security domain. Meanwhile, a semantic reasoning-based permission decision method for unstructured text data is designed. It can achieve a flexible permission decision by similarity thresholding. Experimental results show that the proposed method can reduce the decision time cost of distributed access control to less than 28.7% of a single node. The permission decision model migration method has a high decision accuracy of 97.4%. The semantic reasoning-based permission decision method is optimal to other reference methods in vectorization and index time cost.

A Building Method of Security Architecture Framework on the Medical Information Network Environment (의료정보시스템상에서의 네트워크 보안기능 프레임워크와 보안 아키텍쳐 설계방법)

  • Lee, Dae-Sung;Noh, Si-Choon
    • Convergence Security Journal
    • /
    • v.11 no.4
    • /
    • pp.3-9
    • /
    • 2011
  • On health information network architecture, traffic along the path of traffic and security, blocking malicious code penetration is performed. The medical information system network security infrastructure study, which was whether to be designed based on the structure and methodology is designed to develop the security features. Health informati on system's functionality and capabilities framework for infrastructure is the backbone and structure. The design fea tures a framework for the overall network structure formation of the skeleton and forms the basic structure of the security methodology. Infrastructure capabilities to build the framework and the application functionality is being implemented. Differentiated in accordance with security zones to perform security functions and security mechanisms that operate through this study is to present. u-Healthcare future advent of cloud computing and a new health information environment, the medical information on the preparation of this study is expected to be utilized for security.

Coordination of Anti-Spoofing Mechanisms in Partial Deployments

  • An, Hyok;Lee, Heejo;Perrig, Adrian
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.948-961
    • /
    • 2016
  • Internet protocol (IP) spoofing is a serious problem on the Internet. It is an attractive technique for adversaries who wish to amplify their network attacks and retain anonymity. Many approaches have been proposed to prevent IP spoofing attacks; however, they do not address a significant deployment issue, i.e., filtering inefficiency caused by a lack of deployment incentives for adopters. To defeat attacks effectively, one mechanism must be widely deployed on the network; however, the majority of the anti-spoofing mechanisms are unsuitable to solve the deployment issue by themselves. Each mechanism can work separately; however, their defensive power is considerably weak when insufficiently deployed. If we coordinate partially deployed mechanisms such that they work together, they demonstrate considerably superior performance by creating a synergy effect that overcomes their limited deployment. Therefore, we propose a universal anti-spoofing (UAS) mechanism that incorporates existing mechanisms to thwart IP spoofing attacks. In the proposed mechanism, intermediate routers utilize any existing anti-spoofing mechanism that can ascertain if a packet is spoofed and records this decision in the packet header. The edge routers of a victim network can estimate the forgery of a packet based on this information sent by the upstream routers. The results of experiments conducted with real Internet topologies indicate that UAS reduces false alarms up to 84.5% compared to the case where each mechanism operates individually.