• Title/Summary/Keyword: Security Service Model

Search Result 763, Processing Time 0.027 seconds

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

The Influence of the Restrictions in Chinese economic growth on Korean commercial environment (중국 경제성장의 제약요인이 한국 통상환경에 미치는 영향)

  • Shong, Il-Ho;Lee, Gye-Young
    • International Commerce and Information Review
    • /
    • v.15 no.4
    • /
    • pp.457-479
    • /
    • 2013
  • Through a Chinese rise, Chinese dream is actualizing as the world's great power. According to outlook of World Bank and IMF, Around 2030 China will be a great power bigger than America's economic power. The rise of China will give a huge impact to the whole world. China expands her influence through a global manufacturing base and a global market. To actualize 'Peaceful Rise' Strategy, China has many constraints. Chinese society is facing many difficult social problem due to side effects of a rapid development. Such as the spread of corruption, the severity of wealth gap, environmental degradation and energy shortage. Internationally there are containment from hegemon so-called 'China threat' dispute, Taiwan issue and territorial disputes. Western countries are hostile to China for two reasons. Based on expectations, one is China's socialist system and the other is the rising China which will compete for supremacy with Europe and America. Recent emergence of Chinese nationalism and the containment of the neighboring countries are also serious limiting factors. Domestically they have the rampant corruption in the bureaucracy, weakened capacity of Communist rule, wealth disparity due to the discriminatory economic development strategy, seriousness of rural problem, social instability, lack of social security systems and the development gap between the eastern coastal areas and western inland areas, ethnic minorities problems, the constraint of sustainable development issues due to lack of resources, environmental pollution and energy constraints. Like the former Soviet Union, China may face a dismantlement. After the rise, China may encounter possibilities of a war between great powers or a collapse of Chinese society caused by deepening internal conflict. Serious economic polarization would make peasants and urban workers, who are social vulnerable people, to turn their back to communist party and threaten the justification and the appropriateness of the ruling communist party. Chinese government will think internal system security threat is more formidable risk factor than a system security threat from the hegemon. The decline of great country comes from internal reasons rather than external reasons. To achieve peaceful rise, unification with Taiwan is an essential prerequisite. Taiwan issues are complex problems which equipped with international and domestic factors. Lack of energy resources, environmental pollution in China will bring economic crisis to Korean enterprises. Important influence to Korean economy will be a changeover of the method in economic development. It will turn the balance of investment and consumption, GDP-centered growth to consumption and environment-centered growth. Services industries including finance, environment, culture, education, health care and social welfare will grow. Change in China's growth model will give a great challenge upon the intermediate goods industry in Korea. Korea should reduce the portion of machinery, automotive, semiconductor, steel and chemical-centered export industry to China, and should increase the proportion of the service industry.

  • PDF

Design of Client-Server Model For Effective Processing and Utilization of Bigdata (빅데이터의 효과적인 처리 및 활용을 위한 클라이언트-서버 모델 설계)

  • Park, Dae Seo;Kim, Hwa Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.109-122
    • /
    • 2016
  • Recently, big data analysis has developed into a field of interest to individuals and non-experts as well as companies and professionals. Accordingly, it is utilized for marketing and social problem solving by analyzing the data currently opened or collected directly. In Korea, various companies and individuals are challenging big data analysis, but it is difficult from the initial stage of analysis due to limitation of big data disclosure and collection difficulties. Nowadays, the system improvement for big data activation and big data disclosure services are variously carried out in Korea and abroad, and services for opening public data such as domestic government 3.0 (data.go.kr) are mainly implemented. In addition to the efforts made by the government, services that share data held by corporations or individuals are running, but it is difficult to find useful data because of the lack of shared data. In addition, big data traffic problems can occur because it is necessary to download and examine the entire data in order to grasp the attributes and simple information about the shared data. Therefore, We need for a new system for big data processing and utilization. First, big data pre-analysis technology is needed as a way to solve big data sharing problem. Pre-analysis is a concept proposed in this paper in order to solve the problem of sharing big data, and it means to provide users with the results generated by pre-analyzing the data in advance. Through preliminary analysis, it is possible to improve the usability of big data by providing information that can grasp the properties and characteristics of big data when the data user searches for big data. In addition, by sharing the summary data or sample data generated through the pre-analysis, it is possible to solve the security problem that may occur when the original data is disclosed, thereby enabling the big data sharing between the data provider and the data user. Second, it is necessary to quickly generate appropriate preprocessing results according to the level of disclosure or network status of raw data and to provide the results to users through big data distribution processing using spark. Third, in order to solve the problem of big traffic, the system monitors the traffic of the network in real time. When preprocessing the data requested by the user, preprocessing to a size available in the current network and transmitting it to the user is required so that no big traffic occurs. In this paper, we present various data sizes according to the level of disclosure through pre - analysis. This method is expected to show a low traffic volume when compared with the conventional method of sharing only raw data in a large number of systems. In this paper, we describe how to solve problems that occur when big data is released and used, and to help facilitate sharing and analysis. The client-server model uses SPARK for fast analysis and processing of user requests. Server Agent and a Client Agent, each of which is deployed on the Server and Client side. The Server Agent is a necessary agent for the data provider and performs preliminary analysis of big data to generate Data Descriptor with information of Sample Data, Summary Data, and Raw Data. In addition, it performs fast and efficient big data preprocessing through big data distribution processing and continuously monitors network traffic. The Client Agent is an agent placed on the data user side. It can search the big data through the Data Descriptor which is the result of the pre-analysis and can quickly search the data. The desired data can be requested from the server to download the big data according to the level of disclosure. It separates the Server Agent and the client agent when the data provider publishes the data for data to be used by the user. In particular, we focus on the Big Data Sharing, Distributed Big Data Processing, Big Traffic problem, and construct the detailed module of the client - server model and present the design method of each module. The system designed on the basis of the proposed model, the user who acquires the data analyzes the data in the desired direction or preprocesses the new data. By analyzing the newly processed data through the server agent, the data user changes its role as the data provider. The data provider can also obtain useful statistical information from the Data Descriptor of the data it discloses and become a data user to perform new analysis using the sample data. In this way, raw data is processed and processed big data is utilized by the user, thereby forming a natural shared environment. The role of data provider and data user is not distinguished, and provides an ideal shared service that enables everyone to be a provider and a user. The client-server model solves the problem of sharing big data and provides a free sharing environment to securely big data disclosure and provides an ideal shared service to easily find big data.

The Classification System and Information Service for Establishing a National Collaborative R&D Strategy in Infectious Diseases: Focusing on the Classification Model for Overseas Coronavirus R&D Projects (국가 감염병 공동R&D전략 수립을 위한 분류체계 및 정보서비스에 대한 연구: 해외 코로나바이러스 R&D과제의 분류모델을 중심으로)

  • Lee, Doyeon;Lee, Jae-Seong;Jun, Seung-pyo;Kim, Keun-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.127-147
    • /
    • 2020
  • The world is suffering from numerous human and economic losses due to the novel coronavirus infection (COVID-19). The Korean government established a strategy to overcome the national infectious disease crisis through research and development. It is difficult to find distinctive features and changes in a specific R&D field when using the existing technical classification or science and technology standard classification. Recently, a few studies have been conducted to establish a classification system to provide information about the investment research areas of infectious diseases in Korea through a comparative analysis of Korea government-funded research projects. However, these studies did not provide the necessary information for establishing cooperative research strategies among countries in the infectious diseases, which is required as an execution plan to achieve the goals of national health security and fostering new growth industries. Therefore, it is inevitable to study information services based on the classification system and classification model for establishing a national collaborative R&D strategy. Seven classification - Diagnosis_biomarker, Drug_discovery, Epidemiology, Evaluation_validation, Mechanism_signaling pathway, Prediction, and Vaccine_therapeutic antibody - systems were derived through reviewing infectious diseases-related national-funded research projects of South Korea. A classification system model was trained by combining Scopus data with a bidirectional RNN model. The classification performance of the final model secured robustness with an accuracy of over 90%. In order to conduct the empirical study, an infectious disease classification system was applied to the coronavirus-related research and development projects of major countries such as the STAR Metrics (National Institutes of Health) and NSF (National Science Foundation) of the United States(US), the CORDIS (Community Research & Development Information Service)of the European Union(EU), and the KAKEN (Database of Grants-in-Aid for Scientific Research) of Japan. It can be seen that the research and development trends of infectious diseases (coronavirus) in major countries are mostly concentrated in the prediction that deals with predicting success for clinical trials at the new drug development stage or predicting toxicity that causes side effects. The intriguing result is that for all of these nations, the portion of national investment in the vaccine_therapeutic antibody, which is recognized as an area of research and development aimed at the development of vaccines and treatments, was also very small (5.1%). It indirectly explained the reason of the poor development of vaccines and treatments. Based on the result of examining the investment status of coronavirus-related research projects through comparative analysis by country, it was found that the US and Japan are relatively evenly investing in all infectious diseases-related research areas, while Europe has relatively large investments in specific research areas such as diagnosis_biomarker. Moreover, the information on major coronavirus-related research organizations in major countries was provided by the classification system, thereby allowing establishing an international collaborative R&D projects.

Prenatal Care Utilization Pattern and Its Determinants in Rural Korea (농촌지역 모성의 산전관리서비스 이용양상과 그 결정요인)

  • Kim, Jang-Rak;Park, Jung-Han;Lee, Jae-Kyong;Seo, Sang-Hong;Bang, Joon-Yong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.26 no.4 s.44
    • /
    • pp.599-613
    • /
    • 1993
  • To study the pattern of prenatal care utilization and its determinants in rural Korea, 976 mothers (65.5%) out of 1,489 living mothers in Chinyang, Sachon and Hapchon Counties in Kyongsangnam Province who had delivered a baby between July 1, 1990 and June 30, 1991 were interviewed by the Myon health workers from January 3 through February 15, 1992. The Anderson's behavioral model for health service utilization was applied to develop the frames for analysis. The dependent variable was a number of prenatal care visits. And the independent variables included In the model were the variables pertaining to the predisposing, enabling, medical need and other components. The proportion of mother who had ever received the prenatal care service for the index pregnancy was 97.3%. However, the proportion of mothers who had made more than 10 visits was only 20.6%, which indicated that majority of mothers had paid far less visits than recommended $10{\sim}12$ visits for each normal pregnancy. The low utilization of prenatal care services (none or less than 4 visits) was related to mother's low educational level, the high birth order, beneficiary of the medical aid, the absence of clinic in the community, no diagnosed disease of mother during pregnancy, and mothers engaged in farming. Inequity of access seemed to exist because social structure variables and the variables of enabling component were important predictors. And there seemed to be high mutability in equalizing the distribution of prenatal care services because the variables of enabling component such as type of medical security and whether there was a clinic or not in the community were substantially important.

  • PDF

A Mobile Payment System Based-on an Automatic Random-Number Generation in the Virtual Machine (VM의 자동 변수 생성 방식 기반 모바일 지급결제 시스템)

  • Kang, Kyoung-Suk;Min, Sang-Won;Shim, Sang-Beom
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.6
    • /
    • pp.367-378
    • /
    • 2006
  • A mobile phone has became as a payment tool in e-commerce and on-line banking areas. This trend of a payment system using various types of mobile devices is rapidly growing, especially in the Internet transaction and small-money payment. Hence, there will be a need to define its standard for secure and safe payment technology. In this thesis, we consider the service types of the current mobile payments and the authentication method, investigate the disadvantages, problems and their solutions for smart and secure payment. Also, we propose a novel authentication method which is easily adopted without modification and addition of the existed mobile hardware platform. Also, we present a simple implementation as a demonstration version. Based on virtual machine (VM) approach, the proposed model is to use a pseudo-random number which is confirmed by the VM in a user's mobile phone and then is sent to the authentication site. This is more secure and safe rather than use of a random number received by the previous SMS. For this payment operation, a user should register the serial number at the first step after downloading the VM software, by which can prevent the illegal payment use by a mobile copy-phone. Compared with the previous SMS approach, the proposed method can reduce the amount of packet size to 30% as well as the time. Therefore, the VM-based method is superior to the previous approaches in the viewpoint of security, packet size and transaction time.

A Study of the Establishment of Small and Medium Sized Architectural Design Firm BIM Environment based on Virtual Desktop Infrastructure (가상 데스크톱 인프라(VDI) 기술을 활용한 중소규모 설계사의 BIM 사용자 별 데스크탑 자원 할당 전략에 관한 연구)

  • Lee, Kyuhyup;Shin, Joonghwan;Kwon, Soonwook;Park, Jaewoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.5
    • /
    • pp.78-88
    • /
    • 2016
  • Recently BIM technology has been expanded for using in construction project. However its spread has been delayed than the initial expectations, due to the high-cost of BIM infrastructure development, the lack of regulations, the lack of process and so forth. In design phase, especially, collaboration based on BIM system has being a key factor for successful next generation building project. Through the analysis of current research trend about IT technologies, virtualization and BIM service, data exchange such as drawing, 3D model, object data, properties using cloud computing and virtual server system is defined as a most successful solution. In various industrial fields, cloud computing technology is utilized as a promising solution which can reduce time and cost of hardware infrastructure. Among the cloud computing technology, VDI is receiving a great deal of attention from it market as an essential part cloud computing. VDI enables to host multiple individual virtual machines by using hypervisor. It has an advantage to easy main device management. Therefore, this study implements a step-by-step user's DaaS by analyzing the desktop resource data of the workers from Pre-design phase to Schematic design, Design develop and Construction design phase. It also develops BIM environment based on test of BIM modeler and designers in architectural design firm. The goal of the study is to enable the cloud computing BIM server. It provides cost saving, high-performance quality of working environment and cooperation's convenience and high security when doing BIM work in small and medium sized architectural design firm.

A Study on the Development of Standard Profiles Management System which supports the Technical Reference Model for Information Technology Architecture (정보기술 아키텍처를 위한 기술참조모델을 지원하는 표준프로파일 관리시스템 개발에 관한 연구)

  • Yang, Jin-Hyeok;Kim, Yeong-Do;Jeong, Hui-Jun;Yang, Jin-Yeong;Yu, Myeong-Hwan
    • The KIPS Transactions:PartD
    • /
    • v.8D no.6
    • /
    • pp.665-672
    • /
    • 2001
  • ITA (Information Technology Architecture) satisfies the requirements of information system, supports the information used in the institution's business to guarantee the interoperability and security, and analyzes the components of information system. ITA consists of EA (Enterprise Architecture), TRM (Technical Reference Manual) and SP (Standard Profile). The SP, one of the major components of ITA, is a set of information technology standards. In this paper, to construct and utilize the ITA, we mention the applications of information technology about the SP system implementation based on the TRM. The SP management system implemented in this paper is the first trial in Korea, and designs the software with object oriented programming languages such as JSP and Java. Moreover the basic and detailed specification based on the UML notation, system design using the component and system design pattern consisting of software architectures enhance the software reusability. And the constructed system in this paper shows less maintenance cost by using the public softwares such as Linux system, Korean DBMS, Apache and Tomcat, etc. Finally, the system includes the SP reference system which is used in the other institutions and cannot be found in other institutions. Also it includes the additional diverse service modules which support the subsequent processing for the establishment and revision of standards via internet.

  • PDF

Secure Training Support Vector Machine with Partial Sensitive Part

  • Park, Saerom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, we propose a training algorithm of support vector machine (SVM) with a sensitive variable. Although machine learning models enable automatic decision making in the real world applications, regulations prohibit sensitive information from being used to protect privacy. In particular, the privacy protection of the legally protected attributes such as race, gender, and disability is compulsory. We present an efficient least square SVM (LSSVM) training algorithm using a fully homomorphic encryption (FHE) to protect a partial sensitive attribute. Our framework posits that data owner has both non-sensitive attributes and a sensitive attribute while machine learning service provider (MLSP) can get non-sensitive attributes and an encrypted sensitive attribute. As a result, data owner can obtain the encrypted model parameters without exposing their sensitive information to MLSP. In the inference phase, both non-sensitive attributes and a sensitive attribute are encrypted, and all computations should be conducted on encrypted domain. Through the experiments on real data, we identify that our proposed method enables to implement privacy-preserving sensitive LSSVM with FHE that has comparable performance with the original LSSVM algorithm. In addition, we demonstrate that the efficient sensitive LSSVM with FHE significantly improves the computational cost with a small degradation of performance.

Interregional Variant Factor Analysis of Hypertension Treatment Rate in COVID-19 (코로나19에서 고혈압 치료율의 지역 간 변이요인 분석)

  • Park, Jong-Ho;Kim, Ji-Hye
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.469-482
    • /
    • 2022
  • The purpose of this study is to analyze regional variation factors of hypertension treatment rate in COVID-19 based on the analysis results based on ecological methodology. To this end, data suitable for ecological analysis were collected from the Korea Centers for Disease Control and Prevention's regional health statistics, local government COVID-19 confirmed cases, National Health Insurance Corporation, Health Insurance Review and Assessment Service's welfare statistics, and Korea Transport Institute's traffic access index. Descriptive statistics and correlation analysis were conducted using SPSS Statistics 23 for regional variation and related factors in hypertension treatment rate, and geographical weighted regression analysis was conducted using Arc GIS for regional variation factors. As a result of the study, the overall explanatory power of the calculated geo-weighted regression model was 27.6%, distributed from 23.1% to 33.4% by region. As factors affecting the treatment rate of hypertension, the higher the rate of basic living security medical benefits, diabetes treatment rate, and health institutions per 100,000 population, the higher the rate of hypertension treatment, the lower the number of COVID-19 confirmed patients, the lower the rate of physical activity, and the alcohol consumption. Percentage of alcohol consumption decreased due to COVID-19 pandemic. It was analyzed that the lower the ratio, the higher the treatment rate for hypertension. Based on these results, the analysis of regional variables in the treatment rate of hypertension in COVID-19 can be expected to be effective in managing the treatment rate of hypertension, and furthermore, it is expected to be used to establish community-centered health promotion policies.