• Title/Summary/Keyword: Security Devices

Search Result 1,603, Processing Time 0.031 seconds

IoT Malware Detection and Family Classification Using Entropy Time Series Data Extraction and Recurrent Neural Networks (엔트로피 시계열 데이터 추출과 순환 신경망을 이용한 IoT 악성코드 탐지와 패밀리 분류)

  • Kim, Youngho;Lee, Hyunjong;Hwang, Doosung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.197-202
    • /
    • 2022
  • IoT (Internet of Things) devices are being attacked by malware due to many security vulnerabilities, such as the use of weak IDs/passwords and unauthenticated firmware updates. However, due to the diversity of CPU architectures, it is difficult to set up a malware analysis environment and design features. In this paper, we design time series features using the byte sequence of executable files to represent independent features of CPU architectures, and analyze them using recurrent neural networks. The proposed feature is a fixed-length time series pattern extracted from the byte sequence by calculating partial entropy and applying linear interpolation. Temporary changes in the extracted feature are analyzed by RNN and LSTM. In the experiment, the IoT malware detection showed high performance, while low performance was analyzed in the malware family classification. When the entropy patterns for each malware family were compared visually, the Tsunami and Gafgyt families showed similar patterns, resulting in low performance. LSTM is more suitable than RNN for learning temporal changes in the proposed malware features.

Hybrid Trust Computational Model for M2M Application Services (M2M 애플리케이션 서비스를 위한 하이브리드형 신뢰 평가 모델)

  • Kim, Yukyong
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.53-62
    • /
    • 2020
  • In the end-user domain of an IoT environment, there are more and more intelligent M2M devices that provide resources to create and share application services. Therefore, it can be very useful to manage trust by transferring the role of the existing centralized service provider to end users in a P2P environment. However, in a decentralized M2M computing environment where end users independently provide or consume services, mutual trust building is the most important factor. This is because malicious users trying to build malfunctioning services can cause security problems in M2M computing environments such as IoT. In this paper, we provide an integrated analysis and approach for trust evaluation of M2M application services, and an optimized trust evaluation model that can guarantee reliability among users of the M2M community.

Assessment of Collaborative Source-Side DDoS Attack Detection using Statistical Weight (통계적 가중치를 이용한 협력형 소스측 DDoS 공격 탐지 기법 성능 평가)

  • Yeom, Sungwoong;Kim, Kyungbaek
    • KNOM Review
    • /
    • v.23 no.1
    • /
    • pp.10-17
    • /
    • 2020
  • As the threat of Distributed Denial-of-Service attacks that exploit weakly secure IoT devices has spread, research on source-side Denial-of-Service attack detection is being activated to quickly detect the attack and the location of attacker. In addition, a collaborative source-side attack detection technique that shares detection results of source-side networks located at individual sites is also being activated to overcome regional limitations of source-side detection. In this paper, we evaluate the performance of a collaborative source-side DDoS attack detection using statistical weights. The statistical weight is calculated based on the detection rate and false positive rate corresponding to the time zone of the individual source-side network. By calculating weighted sum of the source-side DoS attack detection results from various sites, the proposed method determines whether a DDoS attack happens. As a result of the experiment based on actual DNS request to traffic, it was confirmed that the proposed technique reduces false positive rate 2% while maintaining a high attack detection rate.

Design of Indoor Location-based IoT Service Platform

  • Kim, Bong-Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.231-238
    • /
    • 2022
  • In this paper, among short-range wireless communication technologies such as Beacon, Bluetooth, UWB (Ultra-wideband), ZigBee, NFC (Near Field Communication), Z-Wave, 6LoWPAN (IPv6 over Low power WPAN), D2D (Device to Device), etc., proposed an IoT service platform based on a beacon that can provide indoor positioning. And, a beacon-linked web server was designed by blocking indiscriminate beacon spam signals and applying REST web service technology with flexibility and scalability. Data accessibility between different devices was verified by testing the success rate of data transmission, the success rate of blocking beacon push, the success rate of IoT interlocking processing, the accuracy of location positioning, and the success rate of REST web service-based data processing. Through the designed IoT service platform, various proposals and research on short-distance-based business models and service platforms will be conducted in the future.

Blockchain (A-PBFT) Based Authentication Method for Secure Lora Network (안전한 Lora 네트워크를 위한 블록체인(A-PBFT) 기반 인증 기법)

  • Kim, Sang-Geun
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.17-24
    • /
    • 2022
  • Lora, a non-band network technology of the long-distance wireless standard LPWAN standard, uses ABP and OTTA methods and AES-128-based encryption algorithm (shared key) for internal terminal authentication and integrity verification. Lora's recent firmware tampering vulnerability and shared-key encryption algorithm structure make it difficult to defend against MITM attacks. In this study, the consensus algorithm(PBFT) is applied to the Lora network to enhance safety. It performs authentication and PBFT block chain creation by searching for node groups using the GPS module. As a result of the performance analysis, we established a new Lora trust network and proved that the latency of the consensus algorithm was improved. This study is a 4th industry convergence study and is intended to help improve the security technology of Lora devices in the future.

Design of a Secure Keypads to prevent Smudge Attack using Fingerprint Erasing in Mobile Devices (모바일 단말기에서 지문 지우기를 활용한 스머지 공격 방지를 위한 보안 키패드 설계)

  • Hyung-Jin, Mun
    • Journal of Industrial Convergence
    • /
    • v.21 no.2
    • /
    • pp.117-123
    • /
    • 2023
  • In the fintech environment, Smart phones are mainly used for various service. User authentication technology is required to use safe services. Authentication is performed by transmitting authentication information to the server when the PIN or password is entered and touch the button completing authentication. But A post-attack is possible because the smudge which is the trace of using screen remains instead of recording attack with a camera or SSA(Shoulder Surfing Attack). To prevent smudge attacks, users must erase their fingerprints after authentication. In this study, we proposed a technique to determine whether to erase fingerprints. The proposed method performed erasing fingerprint which is the trace of touching after entering PIN and designed the security keypads that processes instead of entering completion button automatically when determined whether the fingerprint has been erased or not. This method suggests action that must erase the fingerprint when entering password. By this method, A user must erase the fingerprint to complete service request and can block smudge attack.

A Study on the Effectiveness of Investment Protection in North Korea (대북 투자보호의 실효성 제고 방안에 대한 고찰)

  • Hyun-suk Oh
    • Journal of Arbitration Studies
    • /
    • v.33 no.2
    • /
    • pp.53-83
    • /
    • 2023
  • The investment agreement prepared at the beginning of inter-Korean economic cooperation in 2000 can be evaluated as very ineffective as a product of mutual political and diplomatic compromise rather than an effective protection for our investment assets. South Korean companies suffered a lot of losses due to the freezing of assets in the Geumgang mountain district and the closure of the Kaeseung Industrial Complex, but they did not receive practical damage relief due to institutional vulnerabilities. Currently, North Korea is under international economic sanctions of the UN Security Council, so it is true that the resumption of inter-Korean economic cooperation is far away, but North Korea's human resources and geographical location are still attractive investment destinations for us. Therefore, if strained relations between the two Koreas recover in the future and international economic sanctions on North Korea are eased, Korean companies' investment in North Korea will resume. However, the previous inter-Korean investment agreement system was a fictional systemthat was ineffective. Therefore, if these safety devices are not reorganized when economic cooperation resumes, unfair damage to Korean companies will be repeated again. The core of the improved investment guarantee system is not a bilateral system between the two Koreas, but the establishment of a multilateral system through North Korea's inclusion in the international economy. Specifically, it includes encouraging North Korea to join international agreements for the execution of arbitration decisions, securing subrogation rights through membership of international insurance groups such as MIGA, creating matching funds by international financial organizations. Through this new approach, it will be possible to improve the safety of Korean companies' investment in North Korea, and ultimately, it will be necessary to lay the foundation for mutual development through economic cooperation between the two Koreas.

  • PDF

Verification of Optical Wireless Communication Functionality in Micro-LED Display Light Source Integrated with Field-effect Transistor (전계형 스위칭 소자가 집적된 마이크로 LED 디스플레이 광원의 광 무선 통신 기능 검증)

  • Jong-In Kim;Hyun-Sun Park;Pan-Ki Min;Myung-Jin Go;Young-Woo Kim;Jung-Hyun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.1-5
    • /
    • 2023
  • In the past, display devices have undergone many changes, such as plasma TVs and LCDs, and have continued to develop. Recently, new display technologies, such as Organic Light Emitting Diode displays and Inorganic Light Emitting Diode displays, have been developed. Among them, Micro LED displays have the potential to improve performance more than LCDs and OLEDs, but a lot of effort and time are needed until the mass production technology (transfer and bonding) of Micro LED displays is developed. We have developed a new Micro LED display light source that can be produced using existing transfer and bonding process technologies to enable faster commercialization of Micro LED in the industry. This light source is TFT deposition on LED. TFT deposition on LED has the advantage of being able to produce displays using existing process technology, making early commercialization of display application products possible. In this study, we applied the Active Driving method to verify the performance of TFT deposition on LED as a display to determine its commercialization potential. Additionally, to facilitate faster application of Micro LED in the industry, we applied TFT deposition on LED to Optical Wireless Communication systems, which are widely used in application service areas such as safety/security and sensors, to verify its communication performance. The experimental results confirmed that TFT deposition on LED is not only capable of AM driving but can also be applied to OWC systems.

  • PDF

An Adaptive Tuned Heave Plate (ATHP) for suppressing heave motion of floating platforms

  • Ruisheng Ma;Kaiming Bi;Haoran Zuo
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.283-299
    • /
    • 2023
  • Structural stability of floating platforms has long since been a crucial issue in the field of marine engineering. Excessive motions would not only deteriorate the operating conditions but also seriously impact the safety, service life, and production efficiency. In recent decades, several control devices have been proposed to reduce unwanted motions, and an attractive one is the tuned heave plate (THP). However, the THP system may reduce or even lose its effectiveness when it is mistuned due to the shift of dominant wave frequency. In the present study, a novel adaptive tuned heave plate (ATHP) is proposed based on inerter by adjusting its inertance, which allows to overcome the limitation of the conventional THP and realize adaptations to the dominant wave frequencies in real time. Specifically, the analytical model of a representative semisubmersible platform (SSP) equipped with an ATHP is created, and the equations of motion are formulated accordingly. Two optimization strategies (i.e., J1 and J2 optimizations) are developed to determine the optimum design parameters of ATHP. The control effectiveness of the optimized ATHP is then examined in the frequency domain by comparing to those without control and controlled by the conventional THP. Moreover, parametric analyses are systematically performed to evaluate the influences of the pre-specified frequency ratio, damping ratio, heave plate sizes, peak periods and wave heights on the performance of ATHP. Furthermore, a Simulink model is also developed to examine the control performance of ATHP in the time domain. It is demonstrated that the proposed ATHP could adaptively adjust the optimum inertance-to-mass ratio by tracking the dominant wave frequencies in real time, and the proposed system shows better control performance than the conventional THP.

Task offloading scheme based on the DRL of Connected Home using MEC (MEC를 활용한 커넥티드 홈의 DRL 기반 태스크 오프로딩 기법)

  • Ducsun Lim;Kyu-Seek Sohn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.61-67
    • /
    • 2023
  • The rise of 5G and the proliferation of smart devices have underscored the significance of multi-access edge computing (MEC). Amidst this trend, interest in effectively processing computation-intensive and latency-sensitive applications has increased. This study investigated a novel task offloading strategy considering the probabilistic MEC environment to address these challenges. Initially, we considered the frequency of dynamic task requests and the unstable conditions of wireless channels to propose a method for minimizing vehicle power consumption and latency. Subsequently, our research delved into a deep reinforcement learning (DRL) based offloading technique, offering a way to achieve equilibrium between local computation and offloading transmission power. We analyzed the power consumption and queuing latency of vehicles using the deep deterministic policy gradient (DDPG) and deep Q-network (DQN) techniques. Finally, we derived and validated the optimal performance enhancement strategy in a vehicle based MEC environment.