• Title/Summary/Keyword: Secure Storage

Search Result 397, Processing Time 0.026 seconds

The Authentication and Key Management Method based on PUF for Secure USB (PUF 기반의 보안 USB 인증 및 키 관리 기법)

  • Lee, Jonghoon;Park, Jungsoo;Jung, Seung Wook;Jung, Souhwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.12
    • /
    • pp.944-953
    • /
    • 2013
  • Recently, a storage media is becoming smaller and storage capacity is also becoming larger than before. However, important data was leaked through a small storage media. To solve these serious problem, many security companies manufacture secure USBs with secure function, such as data encryption, user authentication, not copying data, and management system for secure USB, etc. But various attacks, such as extracting flash memory from USBs, password hacking or memory dump, and bypassing fingerprint authentication, have appeared. Therefore, security techniques related to secure USBs have to concern many threats for them. The basic components for a secure USB are secure authentication and data encryption techniques. Though existing secure USBs applied password based user authentication, it is necessary to develop more secure authentication because many threats have appeared. And encryption chipsets are used for data encryption however we also concern key managements. Therefore, this paper suggests mutual device authentication based on PUF (Physical Unclonable Function) between USBs and the authentication server and key management without storing the secret key. Moreover, secure USB is systematically managed with metadata and authentication information stored in authentication server.

Side-Channel Attack against Secure Data Deduplication over Encrypted Data in Cloud Storage (암호화된 클라우드 데이터의 중복제거 기법에 대한 부채널 공격)

  • Shin, Hyungjune;Koo, Dongyoung;Hur, Junbeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.4
    • /
    • pp.971-980
    • /
    • 2017
  • Data deduplication can be utilized to reduce storage space in cloud storage services by storing only a single copy of data rather than all duplicated copies. Users who are concerned the confidentiality of their outsourced data can use secure encryption algorithms, but it makes data deduplication ineffective. In order to reconcile data deduplication with encryption, Liu et al. proposed a new server-side cross-user deduplication scheme by exploiting password authenticated key exchange (PAKE) protocol in 2015. In this paper, we demonstrate that this scheme has side channel which causes insecurity against the confirmation-of-file (CoF), or duplicate identification attack.

Efficient and Secure Identity-Based Public Auditing for Dynamic Outsourced Data with Proxy

  • Yu, Haiyang;Cai, Yongquan;Kong, Shanshan;Ning, Zhenhu;Xue, Fei;Zhong, Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5039-5061
    • /
    • 2017
  • Cloud storage becomes a new trend that more and more users move their data to cloud storage servers (CSSs). To ensure the security of cloud storage, many cloud auditing schemes are proposed to check the integrity of users' cloud data. However, most of them are based on public key infrastructure, which leads to complex certificates management and verification. Besides, most existing auditing schemes are inefficient when user uploads a large amount of data or a third party auditor (TPA) performs auditing for multiple users' data on different CSSs. To overcome these problems, in this paper, we propose an efficient and secure auditing scheme based on identity-based cryptography. To relieve user's computation burden, we introduce a proxy, which is delegated to generate and upload homomorphic verifiable tags for user. We extend our auditing scheme to support auditing for dynamic data operations. We further extend it to support batch auditing in multiple users and multiple CSSs setting, which is practical and efficient in large scale cloud storage system. Extensive security analysis shows that our scheme is provably secure in random oracle model. Performance analysis demonstrates that our scheme is highly efficient, especially reducing the computation cost of proxy and TPA.

An Improved Privacy Preserving Construction for Data Integrity Verification in Cloud Storage

  • Xia, Yingjie;Xia, Fubiao;Liu, Xuejiao;Sun, Xin;Liu, Yuncai;Ge, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3607-3623
    • /
    • 2014
  • The increasing demand in promoting cloud computing in either business or other areas requires more security of a cloud storage system. Traditional cloud storage systems fail to protect data integrity information (DII), when the interactive messages between the client and the data storage server are sniffed. To protect DII and support public verifiability, we propose a data integrity verification scheme by deploying a designated confirmer signature DCS as a building block. The DCS scheme strikes the balance between public verifiable signatures and zero-knowledge proofs which can address disputes between the cloud storage server and any user, whoever acting as a malicious player during the two-round verification. In addition, our verification scheme remains blockless and stateless, which is important in conducting a secure and efficient cryptosystem. We perform security analysis and performance evaluation on our scheme, and compared with the existing schemes, the results show that our scheme is more secure and efficient.

An Efficient Provable Secure Public Auditing Scheme for Cloud Storage

  • Xu, Chunxiang;Zhang, Yuan;Yu, Yong;Zhang, Xiaojun;Wen, Junwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4226-4241
    • /
    • 2014
  • Cloud storage provides an easy, cost-effective and reliable way of data management for users without the burden of local data storage and maintenance. Whereas, this new paradigm poses many challenges on integrity and privacy of users' data, since users losing grip on their data after outsourcing the data to the cloud server. In order to address these problems, recently, Worku et al. have proposed an efficient privacy-preserving public auditing scheme for cloud storage. However, in this paper, we point out the security flaw existing in the scheme. An adversary, who is on-line and active, is capable of modifying the outsourced data arbitrarily and avoiding the detection by exploiting the security flaw. To fix this security flaw, we further propose a secure and efficient privacy-preserving public auditing scheme, which makes up the security flaw of Worku et al.'s scheme while retaining all the features. Finally, we give a formal security proof and the performance analysis, they show the proposed scheme has much more advantages over the Worku et al.'s scheme.

A Secure Ubiquitous Storage System for Mobile Devices (모바일 기기를 위한 안전한 유비쿼터스 스토리지 시스템)

  • They, Yu-Shu;Lee, Ern-Yu;Lee, Hoon-Jae;Lim, Hyo-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.269-275
    • /
    • 2008
  • The rapid growth of ubiquitous technology has increased the demand of storage capacity in mobile computing. iSCSI(Internet Small Computer Interface), a virtual storage protocol would be one of the possible solutions to resolve this problem. However, the insecure nature of this protocol makes it vulnerable to malicious attacks. In this paper, we aims to design and propose a new secure lightweight iSCSI-based virtual storage scheme for mobile devices. Suitable security mechanisms are considered in the design of our proposed solution in order to overcome existing security problems in iSCSI. Relevant experiments are tarried out and the results revealed that the efficiency of proposed algorithm in which it introduces over 100% Read/Write performance improvement compared with the IPsec approach.

Randomized Block Size (RBS) Model for Secure Data Storage in Distributed Server

  • Sinha, Keshav;Paul, Partha;Amritanjali, Amritanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4508-4530
    • /
    • 2021
  • Today distributed data storage service are being widely used. However lack of proper means of security makes the user data vulnerable. In this work, we propose a Randomized Block Size (RBS) model for secure data storage in distributed environments. The model work with multifold block sizes encrypted with the Chinese Remainder Theorem-based RSA (C-RSA) technique for end-to-end security of multimedia data. The proposed RBS model has a key generation phase (KGP) for constructing asymmetric keys, and a rand generation phase (RGP) for applying optimal asymmetric encryption padding (OAEP) to the original message. The experimental results obtained with text and image files show that the post encryption file size is not much affected, and data is efficiently encrypted while storing at the distributed storage server (DSS). The parameters such as ciphertext size, encryption time, and throughput have been considered for performance evaluation, whereas statistical analysis like similarity measurement, correlation coefficient, histogram, and entropy analysis uses to check image pixels deviation. The number of pixels change rate (NPCR) and unified averaged changed intensity (UACI) were used to check the strength of the proposed encryption technique. The proposed model is robust with high resilience against eavesdropping, insider attack, and chosen-plaintext attack.

Secure Deletion for Flash Memory File System (플래시메모리 파일시스템을 위한 안전한 파일 삭제 기법)

  • Sun, Kyoung-Moon;Choi, Jong-Moo;Lee, Dong-Hee;Noh, Sam-H.
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.6
    • /
    • pp.422-426
    • /
    • 2007
  • Personal mobile devices equipped with non-volatile storage such as MP3 player, PMP, cellular phone, and USB memory require safety for the stored data on the devices. One of the safety requirements is secure deletion, which is removing stored data completely so that the data can not be restored illegally. In this paper, we study how to design the secure deletion on Flash memory, commonly used as storage media for mobile devices. We consider two possible secure deletion policy, named zero-overwrite and garbage-collection respectively, and analyze how each policy affects the performance of Flash memory file systems. Then, we propose an adaptive file deletion scheme that exploits the merits of the two possible policies. Specifically, the proposed scheme applies the zero-overwrite policy for small files, whereas it employs the garbage-collection policy for large files. Real implementation experiments show that the scheme is not only secure but also efficient.

On the Establishment of LSTM-based Predictive Maintenance Platform to Secure The Operational Reliability of ICT/Cold-Chain Unmanned Storage

  • Sunwoo Hwang;Youngmin Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.221-232
    • /
    • 2023
  • Recently, due to the expansion of the logistics industry, demand for logistics automation equipment is increasing. The modern logistics industry is a high-tech industry that combines various technologies. In general, as various technologies are grafted, the complexity of the system increases, and the occurrence rate of defects and failures also increases. As such, it is time for a predictive maintenance model specialized for logistics automation equipment. In this paper, in order to secure the operational reliability of the ICT/Cold-Chain Unmanned Storage, a predictive maintenance system was implemented based on the LSTM model. In this paper, a server for data management, such as collection and monitoring, and an analysis server that notifies the monitoring server through data-based failure and defect analysis are separately distinguished. The predictive maintenance platform presented in this paper works by collecting data and receiving data based on RabbitMQ, loading data in an InMemory method using Redis, and managing snapshot data DB in real time. The predictive maintenance platform can contribute to securing reliability by identifying potential failures and defects that may occur in the operation of the ICT/Cold-Chain Unmanned Storage in the future.

Data Firewall: A TPM-based Security Framework for Protecting Data in Thick Client Mobile Environment

  • Park, Woo-Ram;Park, Chan-Ik
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.331-337
    • /
    • 2011
  • Recently, Virtual Desktop Infrastructure (VDI) has been widely adopted to ensure secure protection of enterprise data and provide users with a centrally managed execution environment. However, user experiences may be restricted due to the limited functionalities of thin clients in VDI. If thick client devices like laptops are used, then data leakage may be possible due to malicious software installed in thick client mobile devices. In this paper, we present Data Firewall, a security framework to manage and protect security-sensitive data in thick client mobile devices. Data Firewall consists of three components: Virtual Machine (VM) image management, client VM integrity attestation, and key management for Protected Storage. There are two types of execution VMs managed by Data Firewall: Normal VM and Secure VM. In Normal VM, a user can execute any applications installed in the laptop in the same manner as before. A user can access security-sensitive data only in the Secure VM, for which the integrity should be checked prior to access being granted. All the security-sensitive data are stored in the space called Protected Storage for which the access keys are managed by Data Firewall. Key management and exchange between client and server are handled via Trusted Platform Module (TPM) in the framework. We have analyzed the security characteristics and built a prototype to show the performance overhead of the proposed framework.