• Title/Summary/Keyword: Secure Computation

Search Result 200, Processing Time 0.051 seconds

Secure Inner Product Encryption Scheme with Attribute Hiding in Bilinear Groups (Bilinear Group에서 속성 은닉을 가지는 안전한 내적 암호화 방식)

  • Sadikin, Rifki;Park, YoungHo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.57-70
    • /
    • 2014
  • Inner product encryption (IPE) scheme is a cryptographic primitive that provides fine grained relations between secret keys and ciphertexts. This paper proposes a new IPE scheme which achieves fully attribute hiding security. Our IPE scheme is based on bilinear groups of a composite order. We prove the fully attribute hiding security of our IPE by using dual encryption system framework. In performance analysis, we compare the computation cost and memory requirement of our proposed IPE to other existing IPE schemes.

Practical Schemes for Tunable Secure Network Coding

  • Liu, Guangjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1193-1209
    • /
    • 2015
  • Network coding is promising to maximize network throughput and improve the resilience to random network failures in various networking systems. In this paper, the problem of providing efficient confidentiality for practical network coding system against a global eavesdropper (with full eavesdropping capabilities to the network) is considered. By exploiting a novel combination between the construction technique of systematic Maximum Distance Separable (MDS) erasure coding and traditional cryptographic approach, two efficient schemes are proposed that can achieve the maximum possible rate and minimum encryption overhead respectively on top of any communication network or underlying linear network code. Every generation is first subjected to an encoding by a particular matrix generated by two (or three) Vandermonde matrices, and then parts of coded vectors (or secret symbols) are encrypted before transmitting. The proposed schemes are characterized by tunable and measurable degrees of security and also shown to be of low overhead in computation and bandwidth.

Design of Digital Fingerprinting Scheme for Multi-purchase

  • Choi, Jae-Gwi;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1708-1718
    • /
    • 2004
  • In this paper, we are concerned with a digital fingerprinting scheme for multi-purchase where a buyer wants to buy more than a digital content. If we apply previous schemes to multi-purchase protocol, the number of execution of registration step and decryption key should be increased in proportion to that of digital contents to be purchased in order to keep unlinkability. More worse, most of fingerprinting schemes in the literature are based on either secure multi-party computation or general zero-knowledge proofs with very high computational complexity. These high complexities complicate materialization of fingerprinting protocol more and more. In this paper, we propose a multi-purchase fingerprinting scheme with lower computational complexity. In the proposed scheme, a buyer executes just one-time registration step regardless of the number of contents to be purchased. The number of decryption key is constant and independent of the number of contents to be purchased. We can also reduce the computational costs of buyers by introducing a concept of proxy-based fingerprinting protocol.

  • PDF

Fast Double Random Phase Encoding by Using Graphics Processing Unit (GPU 컴퓨팅에 의한 고속 Double Random Phase Encoding)

  • Saifullah, Saifullah;Moon, In-Kyu
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.343-344
    • /
    • 2012
  • With the increase of sensitive data and their secure transmission and storage, the use of encryption techniques has become widespread. The performance of encoding majorly depends on the computational time, so a system with less computational time suits more appropriate as compared to its contrary part. Double Random Phase Encoding (DRPE) is an algorithm with many sub functions which consumes more time when executed serially; the computation time can be significantly reduced by implementing important functions in a parallel fashion on Graphics Processing Unit (GPU). Computing convolution using Fast Fourier transform in DRPE is the most important part of the algorithm and it is shown in the paper that by performing this portion in GPU reduced the execution time of the process by substantial amount and can be compared with MATALB for performance analysis. NVIDIA graphic card GeForce 310 is used with CUDA C as a programming language.

  • PDF

DIRECT COMPUTATION OF MARGINAL OPERATING CONDITIONS FOR VOLTAGE COLLAPSE

  • Lee, Kyung-Jae;Jung, Tay-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.195-201
    • /
    • 1989
  • Voltage collapse is a serious concern to the electirc utility industry. It is common to associate steady-state stability with the ability of the transmission system to transport real power and to associate voltage collapse with the inability to provide reactive power at the necessary locations within the system. An algorithm to directly calculate the critical point of system voltage collapse was presented by the authors. The method (based on the ordinary power flow equations and explicit requirement of singularity of the Jacobian matrix) is basically one degree of freedom with proper load distribution factors. This paper suggests a modified algorithm to increase the degree of freedom, introducing the nonlinear programming technique. The objective function is a distance measure between the present operating point and the closest voltage collapse point. Knowledge of the distance and the most vulnarable bus from the voltage collapse point of view may be used as a useful index for the secure system operation.

  • PDF

Client-Side Deduplication to Enhance Security and Reduce Communication Costs

  • Kim, Keonwoo;Youn, Taek-Young;Jho, Nam-Su;Chang, Ku-Young
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.116-123
    • /
    • 2017
  • Message-locked encryption (MLE) is a widespread cryptographic primitive that enables the deduplication of encrypted data stored within the cloud. Practical client-side contributions of MLE, however, are vulnerable to a poison attack, and server-side MLE schemes require large bandwidth consumption. In this paper, we propose a new client-side secure deduplication method that prevents a poison attack, reduces the amount of traffic to be transmitted over a network, and requires fewer cryptographic operations to execute the protocol. The proposed primitive was analyzed in terms of security, communication costs, and computational requirements. We also compared our proposal with existing MLE schemes.

Attribute based User Authentication for Contents Distribution Environments

  • Yoo, Hye-Joung
    • International Journal of Contents
    • /
    • v.8 no.3
    • /
    • pp.79-82
    • /
    • 2012
  • In digital contents distribution environments, a user authentication is an important security primitive to allow only authenticated user to use right services by checking the validity of membership. For example, in Internet Protocol Television (IPTV) environments, it is required to provide an access control according to the policy of content provider. Remote user authentication and key agreement scheme is used to validate the contents accessibility of a user. We propose a novel user authentication scheme using smart cards providing a secure access to multimedia contents service. Each user is authenticated using a subset of attributes which are issued in the registration phase without revealing individual's identity. Our scheme provides the anonymous authentication and the various permissions according to the combination of attributes which are assigned to each user. In spite of more functionality, the result of performance analysis shows that the computation and communication cost is very low. Using this scheme, the security of contents distribution environments in the client-server model can be significantly improved.

Compact Design of the Advanced Encryption Standard Algorithm for IEEE 802.15.4 Devices

  • Song, Oh-Young;Kim, Ji-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.418-422
    • /
    • 2011
  • For low-power sensor networks, a compact design of advanced encryption standard (AES) algorithm is needed. A very small AES core for ZigBee devices that accelerates computation in AES algorithms is proposed in this paper. The proposed AES core requires only one S-Box, which plays a major role in the optimization. It consumes less power than other block-wide and folded architectures because it uses fewer logic gates. The results show that the proposed design significantly decreases power dissipation; however, the resulting increased clock cycles for 128-bit block data processing are reasonable for IEEE 802.15.4 standard throughputs.

A Study on Techniques for Cryptographic-based Privacy-Preserving Data Mining (암호학 기반의 프라이버시 보존형 데이터 마이닝 기술에 관한 연구)

  • Yu, Joon-Suk;Hong, Do-Won;Chung, Kyo-Il
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.983-986
    • /
    • 2005
  • 최근 들어서 데이터 마이닝은 마케팅, 시장 분석, 사업전략 및 도시계획 수립 등 다양한 분야에서 폭넓게 활용되고 있으며, 새로운 분야로 그 활용 영역을 넓혀가고 있다. 하지만 데이터 마이닝은 그 과정에서 데이터 소유자들의 프라이버시가 침해될 수 있는 문제를 내포하고 있으며, 최근에는 이러한 문제를 해결하고자 하는 노력들이 나타나고 있다. 본 논문에서는 데이터 마이닝에서 이러한 문제를 해결하기 위한 프라이버시 보호 기술들에 대해서 살펴보고 각 방법의 특징에 대해서 기술한다. 특히, 안전한 다자간 계산(Secure multiparty computation)에 기반한 암호학적 프라이버시 보호 기술과 그 활용 가능성에 대해서도 기술한다.

  • PDF

A Study on the Lightening of the Block Chain for Improving Congestion Network in M2M Environment (M2M 환경의 혼잡 네트워크 개선을 위한 블록체인 경량화에 대한 연구)

  • Kim, Sanggeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.3
    • /
    • pp.69-75
    • /
    • 2018
  • Recently, various convergence technologies are attracting attention due to the block chain innovation technology in the M2M environment. Although the block-chain-based technology is known to be secure in its own right, there are various problems such as security and weight reduction in various M2M environments connected with this. In this paper, we propose a new lightweight method for the hash tree generation of block chains to solve the lightweight problem. It is designed considering extensibility without affecting the existing block chain. Performance analysis shows that the computation performance increases with decreasing the existing hash length.