• Title/Summary/Keyword: Sectional Stiffness

Search Result 182, Processing Time 0.02 seconds

The role of softening in the numerical analysis of R.C. framed structures

  • Bontempi, Franco;Malerba, Pier Giorgio
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.785-801
    • /
    • 1997
  • Reinforced Concrete beams with tension and compression softening material constitutive laws are studied. Energy-based and non-local regularisation techniques are presented and applied to a R.C. element. The element characteristics (sectional tangent stiffness matrix, element tangent stiffness matrix restoring forces) are directly derived from their symbolic expressions through numerical integration. In this way the same spatial grid allows us to obtain a non-local strain estimate and also to sample the contributions to the element stiffness matrix. Three examples show the spurious behaviors due to the strain localization and the stabilization effects given by the regularisation techniques, both in the case of tension and compression softening. The possibility to overestimate the ultimate load level when the non-local strain measure is applied to a non softening material is shown.

Efficient cross-sectional profiling of built up CFS beams for improved flexural performance

  • Dar, M. Adil;Subramanian, N.;Atif, Mir;Dar, A.R.;Anbarasu, M.;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.333-345
    • /
    • 2020
  • In the past, many efficient profiles have been developed for cold-formed steel (CFS) members by judicious intermediate stiffening of the cross-sections, and they have shown improved structural performance over conventional CFS sections. Most of this research work was based on numerical modelling, thus lacking any experimental evidence of the efficiency of these sections. To fulfill this requirement, experimental studies were conducted in this study, on efficient intermediately stiffened CFS sections in flexure, which will result in easy and simple fabrication. Two series of built-up sections, open sections (OS) and box sections (BS), were fabricated and tested under four-point loading with same cross-sectional area. Test strengths, modes of failure, deformed shapes, load vs. mid-span displacements and geometric imperfections were measured and reported. The design strengths were quantified using North American Standards and Indian Standards for cold-formed steel structures. This study confirmed that efficient profiling of CFS sections can improve both the strength and stiffness performance by up to 90%. Closed sections showed better strength performance whereas open sections showed better stiffness performance.

Vibratory Hub Loads of Helicopters due to Uncertainty of Composite Blade Properties (복합재료 블레이드의 불확실성을 고려한 헬리콥터 허브 진동하중 해석)

  • You, Young-Hyun;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.634-641
    • /
    • 2009
  • In this work, the behavior of vibratory hub loads induced due to the uncertainties of composite material properties for each of the participating rotor blades is investigated. The random material properties of composites available from the existing experimental data are processed by using the Monte-Carlo simulation technique to obtain the stochastic distribution of sectional stiffnesses of composite blades. The coefficients of variation (standard deviation divided by the mean) obtained from the sectional stiffness constants are used as an input to the comprehensive aeroelastic analysis code that can evaluate the hub loads of a rotor system. It is found that the uncertainty effects of composite material properties inevitably bring a dissimilarity to the rotor system. The influence of hub vibration response with respect to the individual stiffness (flatwise bending, chordwise bending and torsion) changes is also identified.

One-Dimensional Beam Modeling of a Composite Rotor Blade (복합재 블레이드의 1차원 보 모델링)

  • Lee, Min-Woo;Bae, Jae-Sung;Lee, Soo-Yong;Lee, Seok-Joon;Jeon, Boo-Il
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • The three-dimensional finite element modeling of a composite rotor blade is very hard and requires much computation effort. The efficient method to model a composite beam is necessary for the dynamic and aeroelastic analyses of rotor blades. In this study, the beam modeling method of a composite rotor blade is studied using VABS. The computer program, VABS (Variational Asymptotic Beam Section Analysis), uses the variational asymptotic method to split a 3-D nonlinear elasticity problem into 2-D cross-sectional analysis and 1-D nonlinear beam problem. The VABS can produce the sectional stiffness coefficients of composite rotor blades with various cross section and initial twist/curvatures, and recover the original 3-D distribution of displacement/strain/stress fields. The results of various cross section beams show that VABS gives us the accurate results comparared to commercial codes and does not need much computation effort. It can be concluded that VABS provides the efficient method to establish the FE model of a composite rotor blade.

  • PDF

Evaluation on structural behaviors of prestressed composite beams using external prestressing member

  • Ahn, Jin-Hee;Jung, Chi-Young;Kim, Sang-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.247-275
    • /
    • 2010
  • In this study, experimental, numerical, and analytical approaches were carried out to evaluate the behavior and prestressing effect of prestressed composite beam by external tendon and cover plate. Behavior of prestressed composite beam, load-carrying capacity, effects of prestressing, and ultimate strength were estimated. The contribution of the section increase of the prestressing method using tendon was less than the prestressing method using cover plate. In accordance with numerical and analytical approaches, the ultimate strength of the prestressed composite beam is shown to be the same value because strength is determined according to the plastic resistance moment and the plastic neutral axis; however, both plastic resistance moment and neutral axis are not affected by prestressing force but affected by sectional stiffness of the prestressing member. Based on these approaches, we concluded that the prestressing method using tendon can be useful in applications without an increase in self-weight, and the prestressing method using high-strength cover plate can be applied to reduce the deflection of the composite beam. The prestressing method using high-strength cover plate can also be used to induce prestress of the composite beam in the case of a large deflection due to a smaller sectional stiffness of the composite beam.

Wind-resistant performance of cable-supported bridges using carbon fiber reinforced polymer cables

  • Zhang, Xin-Jun;Ying, Lei-Dong
    • Wind and Structures
    • /
    • v.10 no.2
    • /
    • pp.121-133
    • /
    • 2007
  • To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are schemed, in which the cable's cross-sectional area is determined by the principle of equivalent axial stiffness. Numerical investigations on the dynamic behavior, aerostatic and aerodynamic stability of the two bridges are conducted by 3D nonlinear analysis, and the effect of different cable materials on the wind resistance is discussed. The results show that as CFRP cables are used in cable-supported bridges, (1) structural natural frequencies are all increased, and particularly great increase of the torsional frequency occurs for suspension bridges; (2) under the static wind action, structural deformation is increased, however its aerostatic stability is basically remained the same as that of the case with steel cables; (3) for suspension bridge, its aerodynamic stability is superior to that of the case with steel cables, but for cable-stayed bridge, it is basically the same as that of the case with steel stay cables. Therefore as far as the wind resistance is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable's cross-sectional area should be determined by the principle of equivalent axial stiffness.

Prestressing Inducing Effect of Continuous Open-top Steel Box Girder Using Modular CFT Members (모듈형 CFT부재를 이용한 개구제형 연속 강박스 거더의 프리스트레싱 도입 효과)

  • Lee, Hak Joon;Kim, Ryeon-Hak;Cho, Kwang-Il;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.111-119
    • /
    • 2022
  • The increasing sectional stiffness and inducing prestress method of continuous steel box girder using modular CFT members use the restoring force of the CFT module generated from removing the prestressing bars in the CFT module after integrating the prestressed CFT module with the lower steel plate of the steel box girders as a prestressing force. The integrated CFT module in the steel box girder can improve the sectional stiffness of the continuous steel box girder section. To examine the applicability of the introduction of prestressing to the integrated steel box girder using the CFT module, in this study, inducing prestressing tests were conducted using CFT modules for steel plate specimens simulating the lower steel plate of the continuous steel box girder, and FE analyses were conducted for inducing prestressing tests. In addition, to confirm the effect of inducing prestress to the actual steel box girder and increasing sectional stiffness by the CFT modules, FE analyses for the actually applicable continuous steel box section were carried out depending on prestressing force and sectional conditions of the CFT modules, FE analysis results were compared.

Validation Study of Composite Rotor Blade Sectional Analysis Program (Ksec2d-AE) (복합재료 블레이드 단면 해석 프로그램(Ksec2d-AE)의 신뢰성 검증)

  • Bae, Jae-Seong;Kim, Hyun-Sik;Bae, Jin-Kyu;Lim, Tae-Hyun;Hwang, Jae-Min;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.277-282
    • /
    • 2018
  • In this study, the accuracy and efficiency of a composite rotor blade cross-section analysis program, Ksec2d-AE, which is available at an educational web-based platform called EDISON-CSD, are assessed for possible use in undergraduate structural analysis projects. To this purpose, the convergence of cross-sectional constants by varying the number of finite elements in the cross-section of a wind turbine blade is investigated. The stiffness constants along with the cross-sectional engineering offsets obtained using Ksec2d-AE are validated against a 3D finite element analysis program MSC NASTRAN.

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

Experimental Investigation of the Lateral Load Capacity and Strength Characteristics of a Steel Plate Concrete (SC) Shear Wall (비보강 강판콘크리트 전단벽의 횡하중 성능 및 강도특성에 대한 실험적 평가)

  • Cho, Sung-Gook;So, Gi-Hwan;Kim, Doo-Kie;Kwon, Min-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.23-32
    • /
    • 2012
  • Research on steel plate concrete (SC) structures for the modularization of nuclear power plants have been performed recently in Korea. In this study, the seismic capacity and stiffness characteristics of unstiffened SC shear walls under the effects of earthquakes were investigated through static pushover tests. Failure modes, sectional strength, and stiffness characteristics of SC structures under lateral loads were inspected by analyzing the experimental results. The strengths obtained by the experiments were also compared with those derived by the design code of the SC structures. One of the main failures of unstiffened SC shear walls was found to be the type of bending shear failure due to the debonding of the steel plate at the concrete interface. The ductility capacity of SC structures was also confirmed to be improved, which is considered to be a confining effect on steel plates in the longitudinal behavior of SC structures.