• Title/Summary/Keyword: Secret key exchange

Search Result 39, Processing Time 0.024 seconds

One-round Secure Key Exchange Protocol With Strong Forward Secrecy

  • Li, Xiaowei;Yang, Dengqi;Chen, Benhui;Zhang, Yuqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5639-5653
    • /
    • 2016
  • Security models for key exchange protocols have been researched for years, however, lots of them only focus on what secret can be compromised but they do not differentiate the timing of secrets compromise, such as the extended Canetti-Krawczyk (eCK) model. In this paper, we propose a new security model for key exchange protocols which can not only consider what keys can be compromised as well as when they are compromised. The proposed security model is important to the security proof of the key exchange protocols with forward secrecy (either weak forward secrecy (wFS) or strong forward secrecy (sFS)). In addition, a new kind of key compromise impersonation (KCI) attacks which is called strong key compromise impersonation (sKCI) attack is proposed. Finally, we provide a new one-round key exchange protocol called mOT+ based on mOT protocol. The security of the mOT+ is given in the new model. It can provide the properties of sKCI-resilience and sFS and it is secure even if the ephemeral key reveal query is considered.

A Security Analysis of Zhao and Gu's Key Exchange Protocol (Zhao와 Gu가 제안한 키 교환 프로토콜의 안전성 분석)

  • Nam, Jung-Hyun;Paik, Ju-Ryon;Lee, Young-Sook;Won, Dong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.91-101
    • /
    • 2012
  • Key exchange protocols are essential for building a secure communication channel over an insecure open network. In particular, password-based key exchange protocols are designed to work when user authentication is done via the use of passwords. But, passwords are easy for human beings to remember, but are low entropy and thus are subject to dictionary attacks. Recently, Zhao and Gu proposed a new server-aided protocol for password-based key exchange. Zhao and Gu's protocol was claimed to be provably secure in a formal adversarial model which captures the notion of leakage of ephemeral secret keys. In this paper, we mount a replay attack on Zhao and Gu's protocol and thereby show that unlike the claim of provable security, the protocol is not secure against leakage of ephemeral secret keys. Our result implies that Zhao and Gu's proof of security for the protocol is invalid.

ON THE STRUCTURES OF CLASS SEMIGROUPS OF QUADRATIC NON-MAXIMAL ORDERS

  • KIM, YONG TAE
    • Honam Mathematical Journal
    • /
    • v.26 no.3
    • /
    • pp.247-256
    • /
    • 2004
  • Buchmann and Williams[1] proposed a key exchange system making use of the properties of the maximal order of an imaginary quadratic field. $H{\ddot{u}}hnlein$ et al. [6,7] also introduced a cryptosystem with trapdoor decryption in the class group of the non-maximal imaginary quadratic order with prime conductor q. Their common techniques are based on the properties of the invertible ideals of the maximal or non-maximal orders respectively. Kim and Moon [8], however, proposed a key-exchange system and a public-key encryption scheme, based on the class semigroups of imaginary quadratic non-maximal orders. In Kim and Moon[8]'s cryptosystem, a non-invertible ideal is chosen as a generator of key-exchange ststem and their secret key is some characteristic value of the ideal on the basis of Zanardo et al.[9]'s quantity for ideal equivalence. In this paper we propose the methods for finding the non-invertible ideals corresponding to non-primitive quadratic forms and clarify the structure of the class semigroup of non-maximal order as finitely disjoint union of groups with some quantities correctly. And then we correct the misconceptions of Zanardo et al.[9] and analyze Kim and Moon[8]'s cryptosystem.

  • PDF

A Session Key Establishment Scheme in Mobile Ad-Hoc Networks (이동 애드혹 네트워크에서 세션 키 설정 방안)

  • 왕기철;정병호;조기환
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.4
    • /
    • pp.353-362
    • /
    • 2004
  • Mobile Ad-Hoc network tends to expose scarce computing resources and various security threats because all traffics are carried in air along with no central management authority. To provide secure communication and save communication overhead, a scheme is inevitable to serurely establish session keys. However, most of key establishment methods for Ad-Hoc network focus on the distribution of a group key to all hosts and/or the efficient public key management. In this paper, a secure and efficient scheme is proposed to establish a session key between two Ad-Hoc nodes. The proposed scheme makes use of the secret sharing mechanism and the Diffie-Hellman key exchange method. For secure intra-cluster communication, each member node establishes session keys with its clusterhead, after mutual authentication using the secret shares. For inter-cluster communication, each node establishes session keys with its correspondent node using the public key and Diffie-Hellman key exchange method. The simulation results prove that the proposed scheme is more secure and efficient than that of the Clusterhead Authentication Based Method(1).

The automatic generation of MPTCP session keys using ECDH (MPTCP에서 ECDH를 이용한 세션 키 자동생성에 관한 연구)

  • Sun, Seol-hee;Kim, Eun-gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1912-1918
    • /
    • 2016
  • MPTCP(Multipath Transmission Control Protocol) is able to compose many TCP paths when two hosts connect and the data is able to be transported through these paths simultaneously. When a new path is added, the authentication between both hosts is necessary to check the validity of host. So, MPTCP exchanges a key when initiating an connection and makes a token by using this key for authentication. However the original MPTCP is vulnerable to MITM(Man In The Middle) attacks because the key is transported in clear text. Therefore, we applied a ECDH(Elliptic Curve Diffie-Hellman) key exchange algorithm to original MPTCP and replaced the original key to the ECDH public key. And, by generating the secret key after the public key exchanges, only two hosts is able to make the token using the secret key to add new subflow. Also, we designed and implemented a method supporting encryption and decryption of data using a shared secret key to apply confidentiality to original MPTCP.

On the Security of Pointcheval-Zimmer Multi-Factor Authenticated Key Exchange Protocol (Pointcheval-Zimmer 다중 인증 요소 기반 인증된 키 교환 프로토콜의 안전성 연구)

  • Byun, Jin Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.3
    • /
    • pp.351-358
    • /
    • 2013
  • In 2008, Pointcheval and Zimmer have presented multi-factor authenticated key exchange protocol with client's secret key, password, biometrics. However, it has been found to be flawed by Hao and Clarke if an attacker has single authentication factor (password), then the attacker can deduce other authentication factors. Interestingly, its countermeasure has not been presented due to the difficulty of design and structural problem. In this paper, an efficient countermeasure is briefly presented and its security is discussed as well.

A Method to Enhance the Security of ZKIP with Weak Keys and Its Application (약한 키를 가지는 대화식 영지식 증명의 안전성 강화 방법과 그 응용)

  • 양대헌
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • We present a systematic way to armor a zero-knowledge interactive proof based identification scheme that has badly chosen keys. Keys are sometimes mistakenly chosen to be weak(neither random nor long), and a weak key is often preferred to a strong key so that it might be easy for human to remember. Weak keys severely degrade the security of ZKIP based identification schemes. We show using off-line guessing attack how the weak key threats the security of ZlKIP based identification schemes. For the proper usage of ZKIP, we introduce a specialized form of ZKIP, which has a secret coin-tossing stage. Using the secret coin tossing, a secure framework is proposed for ZKIP based identification schemes with weak key in the ideal cipher model. The framework is very useful in password based authentication and key exchange protocol

Password-Authenticated Key Exchange between Clients with Different Passwords (서로 다른 패스워드를 가진 사용자간의 패스워드 인증 키 교환 프로토콜)

  • 변지욱;정익래;이동훈
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.1
    • /
    • pp.27-38
    • /
    • 2003
  • Most password-authenticated key exchange schemes in the literature provide an authenticated key exchange between a client and a server based on a pre-shared password. With a rapid change in modem communication environments, it is necessary to construct a secure end-to-end channel between clients, which is a quite different paradigm from the existing ones. In this paper we propose a new framework which provides a password-authenticated ky exchange between clients based only on their two different Passwords without my Pre-shared secret, so called Client-to-Client Password-Authenticated Key Exchange(C2C-PAKE). Security notions and types of possible attacks are newly defined according to the new framework We prove our scheme is secure against all types of attacks considered in the paper. Two secure C2C-PAKE schemes are suggested, one in a cross-realm setting and the other in a single-sorrel setting.

Yi et al.'s Group Key Exchange Protocol : A Security Vulnerability and its Remediation (Yi등이 제안한 그룹 키 교환 프로토콜의 보안 취약성 및 개선 방법)

  • Lee, Young-Sook;Kim, Jee-Yeon;Won, Dong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.4
    • /
    • pp.91-98
    • /
    • 2012
  • A group key exchange (GKE) protocol is designed to allow a group of parties communicating over a public network to establish a common secret key. As group-oriented applications gain popularity over the Internet, a number of GKE protocols have been suggested to provide those applications with a secure multicast channel. Among the many protocols is Yi et al.'s password-based GKE protocol in which each participant is assumed to hold their individual password registered with a trusted server. A fundamental requirement for password-based key exchange is security against off-line dictionary attacks. However, Yi et al.'s protocol fails to meet the requirement. In this paper, we report this security problem with Yi et al.'s protocol and show how to solve it.

Scalable Hierarchical Group Key Establishment using Diffie-Hallman Key Exchange (Diffie-Hallman 키 교환을 이용한 확장성을 가진 계층적 그룹키 설정 프로토콜)

  • 박영희;정병천;이윤호;김희열;이재원;윤현수
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.5
    • /
    • pp.3-15
    • /
    • 2003
  • The secure group communication enables the members, which belong to the same group, to communicate each other in a secure and secret manner. To do so, it is the most important that a group key is securely distributed among them and also group membership is efficiently managed. In detail, the generation, the distribution and the refreshment of a group key would be highly regarded in terms of low communication and computation complexity. In this paper, we show you a new protocol to generate a group key which will be safely shared within a group, utilizing the 2-party Diffie-Hellman key exchange protocol and the complete binary tree. Our protocol has less complexity of computation per group member by substituting many parts of exponentiation computations for multiplications. Consequently, each group member needs constant computations of exponentiation and multiplication regardless of the group size in the protocol and then it has less complexity of the computation than that of any other protocols.