• Title/Summary/Keyword: Secondary structure of proteins

Search Result 99, Processing Time 0.022 seconds

ANION INDUCED BLUE TO PURPLE TRANSITION IN BACTERIORHODOPSIN

  • Singh, Anil K.;Kapil, Mrunalini M.
    • Journal of Photoscience
    • /
    • v.3 no.2
    • /
    • pp.71-76
    • /
    • 1996
  • Anil K. Singh, Mrunalini M. Kapil, Department of Chemistry, Indian Institute of Technology Bombay - 400076, INDIA Purple membrane (PM, $\lambda$$_{max}$ 570 nm) of H. halobium on treatment with sulphuric acid changes its colour to blue ($\lambda$$_{max}$ 608 nm). The purple chromophore can be regenerated from the blue chromophore by exogeneous addition of anions such as CI$^-$ and HPO$_4^{2-}$. Chloride ion is found to be more effective than the dibasic phosphate ion in regenerating the purple chromophore. Nevertheless, one thing common to the anion regeneration is that both CI$^-$ and HPO$_4^{2-}$ show marked pH effect. At pH 1.0 the efficiency of regeneration of the purple chromophore is greater than at pH 2.0, for the same anion concentration. Fluorescence and circular dichroic studies indicate that the proteins do not undergo drastic changes at the secondary' or tertiary structure level and the native structure is preserved during this transition. However, chromophoric-site interactions between retinal and the apoprotein are affected during this colour transition. A molecular mechanism is advanced for this transition.

  • PDF

Molecular characterization and functional annotation of a hypothetical protein (SCO0618) of Streptomyces coelicolor A3(2)

  • Ferdous, Nadim;Reza, Mahjerin Nasrin;Emon, Md. Tabassum Hossain;Islam, Md. Shariful;Mohiuddin, A.K.M.;Hossain, Mohammad Uzzal
    • Genomics & Informatics
    • /
    • v.18 no.3
    • /
    • pp.28.1-28.9
    • /
    • 2020
  • Streptomyces coelicolor is a gram-positive soil bacterium which is well known for the production of several antibiotics used in various biotechnological applications. But numerous proteins from its genome are considered hypothetical proteins. Therefore, the present study aimed to reveal the functions of a hypothetical protein from the genome of S. coelicolor. Several bioinformatics tools were employed to predict the structure and function of this protein. Sequence similarity was searched through the available bioinformatics databases to find out the homologous protein. The secondary and tertiary structure were predicted and further validated with quality assessment tools. Furthermore, the active site and the interacting proteins were also explored with the utilization of CASTp and STRING server. The hypothetical protein showed the important biological activity having with two functional domain including POD-like_MBL-fold and rhodanese homology domain. The functional annotation exposed that the selected hypothetical protein could show the hydrolase activity. Furthermore, protein-protein interactions of selected hypothetical protein revealed several functional partners those have the significant role for the bacterial survival. At last, the current study depicts that the annotated hypothetical protein is linked with hydrolase activity which might be of great interest to the further research in bacterial genetics.

pH Effect on the Structure of Reduced NifU-like Protein from Helicobacter pylori

  • Lee, Ki-Young;Kim, Ji-Hun;Bae, Ye-Ji;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.106-111
    • /
    • 2015
  • Helicobacter pylori (H. pylori) survives in acidic and fluctuating pH conditions of the stomach. The pH effect on H. pylori proteins is important for the advanced understanding of its evolution and viability, although this bacterium has the molecular machinery that neutralizes the acidic condition. HP1492 is known as a conserved NifU-like protein from H. pylori. NifU is a nitrogen fixation protein that mediates the transfer of iron-sulfur (Fe-S) cluster to iron-sulfur proteins like ferredoxin. Commonly, the monomeric reduced state of NifU can be converted to the dimeric oxidized state by intermolecular disulfide bond formation. Because it remains unclear that HP1492 actually behaves as known NifU protein, we first found that this protein can adopt both oxidized and reduced forms using size exclusion chromatography. Circular dichroism experiment showed that HP1492 is relatively well-structured at pH 6.5, compared to other pH conditions. On the basis of the backbone resonance assignment of HP1492, we further characterized the residues that are sensitive to pH using NMR spectroscopy. These residues showing large chemical shift changes could be mapped onto the secondary structure of the protein. Our results could provide the foundation for structural and biophysical studies on a wide spectrum of NifU proteins.

Advances in Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS)-Based Techniques for Elucidating Higher-Order Protein Structures

  • Seo, Jongcheol
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.65-70
    • /
    • 2020
  • Despite its great success in the field of proteomics, mass spectrometry has limited use for determining structural details of peptides, proteins, and their assemblies. Emerging ion mobility spectrometry-mass spectrometry has enabled us to explore the conformational space of protein ions in the gas phase, and further combinations with the gas-phase ion spectroscopy and the collision-induced unfolding have extended its abilities to elucidating the secondary structure and local details of conformational transitions. This review will provide a brief introduction to the combined approaches of IMS-MS with gas-phase ion infrared spectroscopy or collision-induced unfolding and their most recent results that successfully revealed higher-order structural details.

Identification of Nuclear Factors that UV-crosslink to Rev-responsive Element RNA (UV조사에 의해 Rev-responsive element RNA와 결합하는 핵단백질인자의 확인)

  • 박희성;남용석
    • Journal of Life Science
    • /
    • v.7 no.3
    • /
    • pp.161-166
    • /
    • 1997
  • HIV-1 Rev protein plays an important role in regulating the expression of viral structural proteins. It allows the nuclear export and accumulation of unspliced and partially spliced viral mRNA in the cytoplasm. The Rev-responsive element RNA, present in the env gene, forms a higly ordered RNA secondary structure and is required for the Rev-mediated mRNA export. For this process to complete factor(s) are strongly suggested. From our experiments of electrophoretic mobility shift, UV-crosslinking and SDS/PAGE, RRE RNA was found to be recognized to several nuclear factors such as 36/37, 56, 41. 76, 150 kD proteins in the order of reactivity. Among them, 36/37 and 56 kD proteins are more reactive upon a brief UV treatment (5 min) and more persistent in the presence of high amount of nonspecific competitor, heparin. Certain nuclear protein9s) seemed to recognize the RRE RNA structure in competition with Rev to gel mobility shift assay.

  • PDF

The Preliminary Study on the Structure of Cop Protein by CD and NMR

  • Kim, Yun-Kyong;Park, Sang-Ho;Lee, Jee-Hyun;Kwak, Jin-Hwan;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.2
    • /
    • pp.100-108
    • /
    • 1999
  • Cop protein is the transcription repressor protein in rolling circle replication plasmid. With antisense RNA, Cop protein controls the copy number of plasmid. Cop family proteins have been found in various plasmids. Among Cop family proteins, Cop studied in this paper consists of 55 amino acids (Mw. 6,400), and was known to have trimer structure. Since no structural facts are elucidated, we have carried out preliminary experiments aimed at the elucidation of its three dimensional structure. The secondary structure of Cop is studied by CD and NMR. To solve the aggregation of Cop at high concentration, we tested various detergents and salts. The addition of detergents and salts could not solve the aggregation problem. However, we found that concentration is important in solving the aggregation problem. We knew that 0.18mM in 50mM potassium phosphate without any other ingredients is maximum concentration not to aggregate. Wa also investigated the pH dependence of Cop protein, and knew that Cop protein is more stable in acid state. At various temperatures, 15N-1H HSQC spectra were measured in order to find the optimal experimental condition. To enhance the peak resolution, 3D NOESY-HSQC spectrum is acquired. Since there are NOE peaks in the NH-NH region, we knew that Cop protein has $\alpha$-helical content, which was also confirmed by CD.

  • PDF

A Study on the Detection of Similarity GPCRs by using protein Secondary structure (단백질 2차 구조를 이용한 유사 GPCR 검출에 관한 연구)

  • Ku, Ja-Hyo;Han, Chan-Myung;Yoon, Young-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.73-80
    • /
    • 2009
  • G protein-coupled receptors(GPCRs) family is a cell membrane protein, and plays an important role in a signaling mechanism which transmits external signals through cell membranes into cells. But, GPCRs each are known to have various complex control mechanisms and very unique signaling mechanisms. Structural features, and family and subfamily of GPCRs are well known by function. and accordingly, the most fundamental work in studies identifying the previous GPCRs is to classify the GPCRs with given protein sequences. Studies for classifying previously identified GPCRs more easily with mathematical models have been mainly going on. In this paper Considering that functions of proteins are determined by their stereoscopic structures, the present paper proposes a method to compare secondary structures of two GPCRs having different amino acid sequences, and then detect an unknown GPCRs assumed to have a same function in databases of previously identified GPCRs.

Analysis of Structure and Expression of Grapevine 2-oxoglutarate Oxygenase Genes in Response to Low Temperature

  • Kim, Seon Ae;Ahn, Soon Young;Yun, Hae Keun
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.46-54
    • /
    • 2016
  • 2-Oxoglutarate (2OG) acts as a signaling molecule and plays a critical role in secondary metabolism in a variety of organisms, including plants. Six 2-oxoglutarate (2OG) and Fe(II) oxygenase (2OGO) genes, VlCE2OGO1 [Vitis labruscana 2-oxoglutarate (2OG) and Fe(II) oxygenase 1], VlCE2OGO2, VlCE2OGO3, VlCE2OGO4, VlCE2OGO5, and VlCE2OGO6, which show different expression patterns upon transcriptome analysis of 'Campbell Early' grapevine exposed to low temperature for 4 weeks, were analyzed for their structure and expression. Comparison of the deduced amino acid sequences of the 2OGO genes from the V. labruscana transcripts revealed sequence similarities of 38.6% (VlCE2OGO1 and VlCE2OGO2) to 19.2% (VlCE2OGO2 and VlCE2OGO3). The lengths of these genes ranged from 1053 to 2298 bp, and they encoded 316 to 380 amino acids. The prediction of the secondary structure of the encoded proteins by Self-Optimized Prediction Method with Alignment (SOPMA) indicated that all the genes contained alpha helix (23.95 to 41.71%), extended strand (16 to 22.34%), beta turn (6.65 to 9.22%), and random coil (32.97 to 51.58%) in the analysis. Specific primers from unique regions in each gene obtained by alignment of nucleotide sequences were used in real time PCR for analysis of gene expression. All tested genes showed differential expression in grapevines exposed to low temperature. Of the six transcripts, VlCE2OGO1, VlCE2OGO2, and VlCE2OGO3 were up-regulated and VlCE2OGO4, VlCE2OGO5, and VlCE2OGO6 were down-regulated in response to cold treatments at all tested time points. The 2OG genes can be used for elucidation of mechanisms of tolerance to cold and as valuable molecular genetic resources for selection in breeding programs for cold-hardy grapevines.

Effects of Chaperones on mRNA Stability and Gene Expression in Escherichia coli

  • Yoon, Hyun-Jin;Hong, Ji-Young;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.228-233
    • /
    • 2008
  • Effects of chaperones on mRNA stability and gene expression were studied in order to develop an efficient Escherichia coli expression system that can maximize gene expression. The stability of mRNA was modulated by introducing various secondary structures at the 5'-end of mRNA. Four vector systems providing different 5'-end structures were constructed, and genes encoding GFPuv and endoxylanase were cloned into the four vector systems. Primer extension assay revealed different mRNA half-lives depending on the 5'-end secondary structures of mRNA. In addition to the stem-loop structure at the 5'-end of mRNA, coexpression of dnaK-dnaJ-grpE or groEL-groES, representative heat-shock genes in E. coli, increased the mRNA stability and the level of gene expression further, even though the degree of stabilization was varied. Our work suggests that some of the heat-shock proteins can function as mRNA stabilizers as well s protein chaperones.

Monitoring of Structural Changes during in vitro Unfolding and Refolding of Recombinant Human Growth Hormone (재조함 인성장호르몬의 in vitro 풀림과 재접힘 과정의 구조변화 모니터링)

  • Cho, Tae-Hoon;Chai, Young-Kyu;Ahn, Sang-Jeom;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.651-654
    • /
    • 1999
  • Using recombinant human growth hormone as a model protein, we carried out unfolding by adding a denaturant such as urea, guanidine HCl, or SDS followed by refolding by dilution and dialysis. The objectives were to monitor the structural changes during in vitro refolding process and, based on the results, to develop a quantitative method of refolding progress assessment. The changes in surface hydrophobicity were measured by fluorescence tagging of 1-anilinonaphthalene-8-sulfonate(1,8-ANS) to the hydrophobic portions, and those in the secondary structure were monitored by using far UV-CD(circular dichroism) spectroscopy. Also, we used RP-HPLC to separate and quantify the folded and unfolded proteins to correlate the result with the structure analysis. Our results indicate the surface hydrophobicity are well correlated with the formations of the secondary structure, primarily ${\alpha}$-helices, as well as the disulfide bridges. We expect this monitoring technique can be applied in industrial fields as a means to quantitatively assess the progress of in-vitro refolding of recombinant proteins.

  • PDF