Browse > Article
http://dx.doi.org/10.5478/MSL.2020.11.4.65

Advances in Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS)-Based Techniques for Elucidating Higher-Order Protein Structures  

Seo, Jongcheol (Department of Chemistry, Pohang University of Science and Technology (POSTECH))
Publication Information
Mass Spectrometry Letters / v.11, no.4, 2020 , pp. 65-70 More about this Journal
Abstract
Despite its great success in the field of proteomics, mass spectrometry has limited use for determining structural details of peptides, proteins, and their assemblies. Emerging ion mobility spectrometry-mass spectrometry has enabled us to explore the conformational space of protein ions in the gas phase, and further combinations with the gas-phase ion spectroscopy and the collision-induced unfolding have extended its abilities to elucidating the secondary structure and local details of conformational transitions. This review will provide a brief introduction to the combined approaches of IMS-MS with gas-phase ion infrared spectroscopy or collision-induced unfolding and their most recent results that successfully revealed higher-order structural details.
Keywords
protein structure; ion mobility spectrometry-mass spectrometry; ion spectroscopy; collision-induced unfolding;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Laganowsky, A.; Reading, E.; Allison, T.M.; Ulmschneider, M.B.; Degiacomi, M.T.; Baldwin, A.J.; Robinson, C.V. Nature 2014, 510, 172, DOI: 10.1038/nature13419.   DOI
2 Liu, Y.; Cong, X.; Liu, W.; Laganowsky, A. J. Am. Soc. Mass Spectrom. 2017, 28, 579, DOI: 10.1007/s13361-016-1555-1.   DOI
3 Liu, Y.; LoCaste, C. E.; Liu, W.; Poltash, M. L.; Russell, D. H.; Laganowsky, A. Nat. Comm. 2019, 10, 1352, DOI: 10.1038/s41467-019-09333-4.   DOI
4 Liu, Y.; Wu, W.-H.; Hong, S.; Fang, J.; Zhang, F.; Liu, G.-X.; Seo, J.; Zhang, W.-B. Angew. Chem. Int. Ed. 2020, 59, 19153, DOI: 10.1002/anie.202006727.   DOI
5 Cavalli, A.; Salvatella, X.; Dobson, C. M.; Vendruscolo, M. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 9615, DOI: 10.1073/pnas.0610313104.   DOI
6 Clore, G. M.; Gronenborn, A. M. Science 1991, 252, 1390, DOI: 10.1126/science.2047852.   DOI
7 Pfeffer, S.; Mahamid, J. Curr. Opin. Struct. Biol. 2018, 52, 111, DOI: 10.1016/j.sbi.2018.08.009.   DOI
8 Shi, Y. Cell 2014, 159, 995, DOI: 10.1016/j.cell.2014.10.051.   DOI
9 Nilsson, T.; Mann, M.; Aebersold, R.; Yates, J. R.; Bairoch, A.; Bergeron, J. J. M. Nat. Methods 2010, 7, 681, DOI: 10.1038/nmeth0910-681.   DOI
10 Pandey, A.; Mann, M. Nature 2000, 405, 837, DOI: 10.1038/35015709.   DOI
11 Yates, J. R.; Ruse, C. I.; Nakorchevsky, A. Annu. Rev. Biomed. Eng. 2009, 11, 49, DOI: 10.1146/annurevbioeng-061008-124934.   DOI
12 Engen, J. R. Anal. Chem. 2009, 81, 7870, DOI: 10.1021/ac901154s.   DOI
13 Oh, H. B.; Moon, B. Mass Spectrom. Rev. 2015, 34, 116, DOI: 10.1002/mas.21426.   DOI
14 Liu, F.; Heck, A.J.R. Curr. Opin. Struct. Biol. 2015, 35, 100, DOI: 10.1016/j.sbi.2015.10.006.   DOI
15 Ben-Nissan, G.; Sharon, M. Curr. Opin. Chem. Biol. 2018, 42, 25, DOI: 10.1016/j.cbpa.2017.10.026.   DOI
16 Dupuis, N.F.; Wu, C.; Shea, J.-E.; Bowers, M.T. J. Am. Chem. Soc. 2009, 131, 18283, DOI: 10.1021/ja903814q.   DOI
17 Wyttenbach, T.; Bowers, M. T. Annu. Rev. Phys. Chem. 2007, 58, 511, DOI: 10.1146/annurev.physchem.58.032806.104515.   DOI
18 Bohrer, B.C.; Merenbloom, S.I.; Koeniger, S.L.; Hilderbrand, A.E.; Clemmer, D.E. Annu. Rev. Anal. Chem. 2008, 1, 293, DOI: 10.1146/annurev.anchem.1.031207.113001.   DOI
19 Bernstein, S.L.; Dupuis, N.F.; Lazo, N.D.; Wyttenbach, T.; Condron, M.M.; Bitan, G.; Teplow, D.B.; Shea, J.-E.; Ruotolo, B.T.; Robinson, C.V.; Bowers, M.T. Nat. Chem. 2009, 1, 326, DOI: 10.1038/nchem.247.   DOI
20 Bleiholder, C.; Dupuis, N.F.; Wyttenbach, T.; Bowers, M.T. Nat. Chem. 2011, 3, 172, DOI: 10.1038/nchem.945.   DOI
21 Hoffmann, W.; von Helden, G.; Pagel, K. Curr. Opin. Struct. Biol. 2017, 46, 7, DOI: 10.1016/j.sbi.2017.03.002.   DOI
22 Do, T. D.; Economou, N. J.; Chamas, A.; Buratto, S. K.; Shea, J.-E.; Bowers, M. T. J. Phys. Chem. B 2014, 118, 11220, DOI: 10.1021/jp506258g.   DOI
23 Do, T. D.; LaPointe, N. E.; Economou, N. J.; Buratto, S. K.; Feinstein, S. C.; Shea, J.-E.; Bowers, M. T. J. Phys. Chem. B 2013, 117, 10759, DOI: 10.1021/jp406066d.   DOI
24 Do, T. D.; LaPointe, N. E.; Sangwan, S.; Teplow, D. B.; Feinstein, S. C.; Sawaya, M. R.; Eisenberg, D. S.; Bowers, M. T. J. Phys. Chem. B 2014, 118, 7247, DOI: 10.1021/jp502473s.   DOI
25 Young, L. M.; Cao, P.; Raleigh, D. P.; Ashcroft, A. E.; Radford, S. E. J. Am. Chem. Soc. 2014, 136, 660, DOI: 10.1021/ja406831n.   DOI
26 Lanucara, F.; Holman, S. W.; Gray, C. J.; Eyers, C. E. Nat. Chem. 2014, 6, 281, DOI: 10.1038/nchem.1889.   DOI
27 Han, J. Y.; Choi, T. S.; Heo, C. E.; Son, M. K.; Kim, H. I. Mass Spectrom. Rev. 2019, 38, 483, DOI: 10.1002/mas.21596.   DOI
28 Lee, S. J. C.; Lee, J. W.; Choi, T. S.; Jin, K. S.; Lee, S.; Ban, C.; Kim, H. I. Anal. Chem. 2014, 86, 1909, DOI: 10.1021/ac404132g.   DOI
29 Ruotolo, B. T.; Benesch, J. L. P.; Sandercock, A. M.; Hyung, S.-J.; Robinson, C. V. Nat. Protoc. 2008, 3, 1139, DOI: 10.1038/nprot.2008.78.   DOI
30 Oomens, J.; Sartakov, B.G.; Meijer, G.; von Helden, G. Int. J. Mass Spectrom. 2006, 254, 1, DOI: 10.1016/j.ijms.2006.05.009.   DOI
31 Shin, S. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1990, 112, 2066, DOI: 10.1021/ja00162a004.   DOI
32 Shin, S. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1990, 112, 2057, DOI: 10.1021/ja00162a003.   DOI
33 Banisaukas, J.; Szczepanski, J.; Eyler, J.; Vala, M.; Hirata, S.; Head-Gordon, M.; Oomens, J.; Meijer, G.; Von Helden, G. J. Phys. Chem. A 2003, 107, 782, DOI: 10.1021/jp0219754.   DOI
34 Oomens, J.; Meijer, G.; von Helden, G. J. Phys. Chem. A 2001, 105, 8302, DOI: 10.1021/jp0110455.   DOI
35 Kong, X.; Tsai, I.A.; Sabu, S.; Han, C.-C.; Lee, Y.T.; Chang, H.-C.; Tu, S.-Y.; Kung, A.H.; Wu, C.-C. Angew. Chem. Int. Ed. 2006, 45, 4130, DOI: 10.1002/anie.200600597.   DOI
36 Oh, H.-B.; Lin, C.; Hwang, H. Y.; Zhai, H.; Breuker, K.; Zabrouskov, V.; Carpenter, B. K.; McLafferty, F. W. J. Am. Chem. Soc. 2005, 127, 4076, DOI: 10.1021/ja040136n.   DOI
37 Polfer, N. C.; Oomens, J. Mass Spectrom. Rev. 2009, 28, 468, DOI: 10.1002/mas.20215.   DOI
38 Seo, J.; Hoffmann, W.; Malerz, S.; Warnke, S.; Bowers, M. T.; Pagel, K.; von Helden, G. Int. J. Mass Spectrom. 2018, 429, 115, DOI: 10.1016/j.ijms.2017.06.011.   DOI
39 Wu, R.; McMahon, T. B. J. Am. Chem. Soc. 2007, 129, 4864, DOI: 10.1021/ja068715a.   DOI
40 Polfer, N. C. Chem. Soc. Rev. 2011, 40, 2211, DOI: 10.1039/C0CS00171F.   DOI
41 Seo, J.; Hoffmann, W.; Warnke, S.; Bowers, M. T.; Pagel, K.; von Helden, G. Angew. Chem. Int. Ed. 2016, 55, 14173, DOI: 10.1002/anie.201606029.   DOI
42 Seo, J.; Hoffmann, W.; Warnke, S.; Huang, X.; Gewinner, S.; Schollkopf, W.; Bowers, M. T.; von Helden, G.; Pagel, K. Nat. Chem. 2017, 9, 39, DOI: 10.1038/nchem.2615.   DOI
43 Hoffmann, W.; Hofmann, J.; Pagel, K. J. Am. Soc. Mass Spectrom. 2014, 25, 471 DOI: 10.1021/jasms.8b04709.   DOI
44 Hyung, S.-J.; Robinson, C. V.; Ruotolo, B. T. Chem. Biol. 2009, 16, 382, DOI: 10.1016/j.chembiol.2009.02.008.   DOI
45 Tian, Y.; Han, L.; Buckner, A. C.; Ruotolo, B. T. Anal. Chem. 2015, 87, 11509, DOI: 10.1021/acs.analchem.5b03291.   DOI