ANION INDUCED BLUE TO PURPLE TRANSITION IN BACTERIORHODOPSIN

  • Singh, Anil K. (Department of Chemistry, Indian Institute of Technology) ;
  • Kapil, Mrunalini M. (Department of Chemistry, Indian Institute of Technology)
  • Published : 1996.06.01

Abstract

Anil K. Singh, Mrunalini M. Kapil, Department of Chemistry, Indian Institute of Technology Bombay - 400076, INDIA Purple membrane (PM, $\lambda$$_{max}$ 570 nm) of H. halobium on treatment with sulphuric acid changes its colour to blue ($\lambda$$_{max}$ 608 nm). The purple chromophore can be regenerated from the blue chromophore by exogeneous addition of anions such as CI$^-$ and HPO$_4^{2-}$. Chloride ion is found to be more effective than the dibasic phosphate ion in regenerating the purple chromophore. Nevertheless, one thing common to the anion regeneration is that both CI$^-$ and HPO$_4^{2-}$ show marked pH effect. At pH 1.0 the efficiency of regeneration of the purple chromophore is greater than at pH 2.0, for the same anion concentration. Fluorescence and circular dichroic studies indicate that the proteins do not undergo drastic changes at the secondary' or tertiary structure level and the native structure is preserved during this transition. However, chromophoric-site interactions between retinal and the apoprotein are affected during this colour transition. A molecular mechanism is advanced for this transition.

Keywords

References

  1. Annu. Rev. Biochem. v.52 Bacteriorhodopsin and related pigments of halobacteria Stoeckenius, W.;R. A. Bogomolni
  2. J. Mol. Biol. v.213 Model for the structure of bacteriorhodopsin based on high resolution electron cryo-microscopy Henderson, R.;J. M. Baldwin;T. A. Ceska;H. Zemlin;E. Beckman;K. H. Downing
  3. Photochem. Photobiol. v.33 The 'Opsin shift' in bacteriorhodopsin studies with artificial bacteriorhodopsin Bolag-Nair, V. B.;J. D. Carriker;B. Honig;V. Kamat;M. G. Motto;K. Nakanishi;R. Sen;M. Sheeves;M. Arnaboldi;V. Tsujimoto
  4. Biochem. J. v.171 Studies of an acid induced species of purple membrane from Halobacterium halobium Moore, T. A.;M. E. Edgerton;G. Parr;Z. Greenwood;R. N. Perham
  5. Proc. Natl Acad. Sci. USA v.70 Functions of a new photoreceptor membrane Oesterhelt, D.;W. Stoeckenius
  6. FEBS lett. v.87 Time resolution of the intermediate steps in the bacteriorhodopsin linked electrogenesis Dracher, L. A.;A. D. Kaulen;V. Shulachev
  7. Photochem. Photobiol. v.40 Salt and pH dependent changes of the purple membrane absorption spectrum Kimura, Y.;A. Ikegami;W. Stoeckenius
  8. Biophys. J. v.28 Chromophore equilibriums in bacteriorhodopsin Fischer. U.;D. Oesterhelt
  9. Biochem. Biophys. Commun. v.67 Evidence for chromophore intenactions in the purple membrane from reconstitution experimens of the chromophore free membrane Braumer. P. J.;M. P. Heyn;N. A. Dencher
  10. Biophys. J. v.16 Effects of light adaptation on the purple membrane structure of Halobacterium halobium Becher, B.;J. Y. Cassim
  11. Biophys. J. v.31 Changes the Protonasin state of bacteriorhodoption during reconstitution of bacteriorhodopsin Fischer, O.;D. Oesterhelt
  12. Biochemistry v.20 Photochemistry and fluorescence of bacteriorhodopsin excited in its 280-nm absorption band Kalisky, O.;J. Feitelson;M. Ottolenghi
  13. Biophys. J. v.47 Resonance Raman spectra of the acidified and deionised form of bacteriorhodopsin Smith, S. O.;R. A. Mathies
  14. Can. J. Chem. v.63 Structure of bacteriorhodopsin in the acidified membrane and at high ionic strengh: resonance Raman study Massig, G.;M. Stockburger;T. Alsherth
  15. Photochem. Photobiol. v.47 Effect of deionization on the protein fluorescence of bacteriorhodopsin Mercier, G.;P. Dupius
  16. Biophys. J. v.56 Factors affecting the absorption maxima of acidic form of bacterirhodopsin Albeck, A.;N. Friedmann;M. Sheves;M. Ottolengh
  17. Biophys. J. v.56 Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface Szundi, I.;W. Stoeckenius
  18. Proc. Natl. Acad. Sci. U. S. A. v.87 Protonation state of Asp (Glu)-85 regulates the purple to blue transition in bacteriorhodopsin mutants $Arg_{82}$ → Ala and Asp 85 Glu. The blue form is inactive in translocation Subramaniam, S.;Thomas, M.;H. G. Kharona
  19. Biochem. Biophys. Acta. v.1016 Control of bacteriorhodopsin cold by chloride at low pH. Significance for he proton pump mechanism Renthal, R. K.;R. Shuler;R. Regalado
  20. Biochemistry v.29 Solid state $^{13}C$ and $^{15}N$ NMR study of the low pH forms of bacteriorhodopsin DeGroot, H. J. M.;S. O. Smith;J. Courtin;E. V. D. Berg;C. Winkel;J. Luglenburg;P. G. Griffin;J. Herzflex
  21. Proc. Natl. Acad. Sci. USA v.88 Alternative translocation of protons and halide ions by bacteriorhodopsin Der, A.;S. Szaraz;R. Toth-Boconadi;Z. Totaji;L. Kesthelyi;W. Stoeckenius
  22. Annu. Rev. Phys. Chem. v.41 Photophysics and molecular electronic application of the rhodopsins Birge, R. R.
  23. Adv. Mater. v.3 Optical applications of bacteriorhodopsin and its mutated variants Brauchle, C.;N. Hampp;D. Oesterhelt
  24. Methods Enzymol. v.31 Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane Oesterhelt, D.;W. Stoeckenius