• Title/Summary/Keyword: Secondary mirror

Search Result 79, Processing Time 0.028 seconds

Compact Catadioptric Wide Imaging with Secondary Planar Mirror

  • Ko, Young-Jun;Yi, Soo-Yeong
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.329-335
    • /
    • 2019
  • Wide FOV imaging systems are important for acquiring rich visual information. A conventional catadioptric imaging system deploys a camera in front of a curved mirror to acquire a wide FOV image. This is a cumbersome setup and causes unnecessary occlusions in the acquired image. In order to reduce both the burden of the camera deployment and the occlusions in the images, this study uses a secondary planar mirror in the catadioptric imaging system. A compact design of the catadioptric imaging system and a condition for the position of the secondary planar mirror to satisfy the central imaging are presented. The image acquisition model of the catadioptric imaging system with a secondary planar mirror is discussed based on the principles of geometric optics in this study. As a backward mapping, the acquired image is restored to a distortion-free image in the experiments.

Performance Evaluation of the Tip-tilt Actuator in Fast Steering Secondary Mirror for Large Telescope (대형 망원경용 FSM(Fast Steering Secondary Mirror)을 위한 팁틸트 액츄에이터의 성능평가)

  • Kim, Ho Sang;Lee, Dong-Chan;Lee, Kyoung-Don;Kim, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.403-409
    • /
    • 2014
  • For ground-based telescope application, the performance assessment of tip-tilt actuator is important because the optical quality of telescope depends upon the windshake compensation ability of the fast steering secondary mirror. But it is difficult to measure the performance characteristics of the actuators due to the large size mirror and test facilities including the vacuum support and structural frame. In this paper, the full-scale tip-tilt test bed for the large size secondary mirror with diameter of 1m is built and the several tests are performed including the range, resolution and frequency response function. From the measurement results, it is shown that the tip-tilt actuator can successfully compensate the windshake with frequency of maximum 12 Hz and be a candidate for the Giant Magellan Telescope.

Alignment method of the secondary mirror of high resolution electro-optical payload using collimator and wave front sensor (콜리메이터와 파면측정기를 이용한 고해상도 전자광학 탑재체의 제2 반사경 정렬법)

  • Jang, Hong-Sul;Jung, Dae-Jun;Youk, Young-Chun;Kim, Seong-Hui;Ko, Dai-Ho;Lee, Seung-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.101-104
    • /
    • 2011
  • For high resolution electro-optical payload, the alignment and assembly of the secondary mirror with respect to the primary mirror is the most important step of the whole camera assembly process. For the purpose of the secondary mirror alignment, Wave front sensor and Collimator would rather be useful than the interferometer because of its small size and easiness of handling. In this paper the brief alignment procedure and method of the secondary mirror of a high resolution electro-optical camera system was introduced.

Optical Design of an Image-space Telecentric Two-mirror System for Wide-field Line Imaging

  • Lee, Jong-Ung;Kim, Youngsoo;Kim, Seo Hyun;Kim, Yeonsoo;Kim, Hyunsook
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.344-350
    • /
    • 2017
  • We present a new design approach and an example design for an image-space telecentric two-mirror system that has a fast f-number and a wide-field line image. The initial design of the telecentric mirror system is a conventional axially symmetric system, consisting of a flat primary mirror with fourth-order aspheric deformation and an oblate ellipsoidal secondary mirror to correct spherical aberration, coma, and field curvature. Even though in the optimized design the primary mirror is tilted, to avoid ray obstruction by the secondary mirror, the image-space telecentric two-mirror system shows quite good imaging performance, for a line imager.

A Study of Aluminum Reflector Manufacturing in Diamond Turning Machine (다이아몬드 터닝머신을 이용한 알루미늄반사경의 절삭특성)

  • 김건희;고준빈;김홍배;원종호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-5
    • /
    • 2002
  • A 110 m diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fsbricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an A1 substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632.8nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated A1 alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

A Study of Aluminum reflector manufacturing in diamond turning machine (초정밀가공기를 이용한 알루미늄반사경의 절삭특성)

  • 김건희;도철진;홍권희;유병주;원종호;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1125-1128
    • /
    • 2001
  • A 110mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning(SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an Al substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated Al alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

Optical Design of an Off-Axial-Field Two-Mirror System with a Displaced Stop and a Secondary Mirror (조리개와 제 2거울이 횡이동된 비축시야 2반사 광학계 설계)

  • Nam, Ji-Woo;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.304-313
    • /
    • 2020
  • By using an off-axial field with an inverse Cassegrain system where the aperture stop is at the secondary mirror, the two-mirror system can be used for a wide-field objective. However, aberration corrections in conventional two-mirror systems are limited because the design parameters are too small. In this study, we present a new improved design of the off-axial-field two-mirror system. The new design has an independently displaced aperture stop and a secondary mirror. The new design parameters yield more improvement in correction for 5th-order coma and astigmatism, and better aberration balancing for the whole off-axial field. The spot sizes of the new design system are reduced to half of those for a conventional reference design, and the improvement effects are shown for the whole field evenly.

Testing of a Convex Aspheric Secondary Mirror for the Cassegrain Telescope (카세그레인 망원경의 볼록비구면 반사경 파면오차 측정)

  • Kim, Goeun;Rhee, Hyug-Gyo;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.290-294
    • /
    • 2017
  • The Cassegrain telescope consists of a primary concave mirror and a secondary convex mirror. In the case of a secondary mirror, it is more difficult to test wavefront error than for a primary mirror, because it reflects the entire testing beam, as it is convex in shape. In this paper we tested the wavefront error of a complex aspheric convex secondary mirror by using the Simpson-Oland-Meckel Hindle test. To separate the systematic errors, such as fabrication error and alignment error of a meniscus lens, we adopted the QN absolute test (pixel-based absolute test using the quasi-Newton method) as well. Finally, we compared the measured result with that of an ASI (Aspheric Stitching Interferometer) made by the QED company, which resulted in an rms difference of only 2.5 nm, showing a similar shape of astigmatism aberration.

Prototype Development for the GMT FSM Secondary - Off-axis Aspheric Mirror Fabrication -

  • Kim, Young-Soo;Kim, Jihun;Song, Je Heon;Cho, Myung;Yang, Ho-Soon;Lee, Joohyung;Kim, Ho-Sang;Lee, Kyoung-Don;Ahn, Hyo-Sung;Park, Won Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.341-346
    • /
    • 2014
  • A prototype of the GMT FSM has been developed to acquire and to enhance the key technology - mirror fabrication and tip-tilt actuation. The ellipsoidal off-axis mirror has been designed, analyzed, and fabricated from light-weighting to grinding, polishing, and figuring of the mirror surface. The mirror was tested by using an interferometer together with CGHs, which revealed the surface error of 13.7 nm rms in the diameter of 1030 mm. The SCOTS test was employed to independently validate the test results. It measured the surface error to be 17.4 nm rms in the diameter of 1010 mm. Both tests show the optical surface of the FSMP mirror within the required value of 20 nm rms surface error.

Optimal Geometric Design of Secondary Mirror Supporter in Catadioptric Optical System for Observation Reconnaissance Using Response Surface Methodology (반응 표면 분석법을 이용한 감시 정찰용 반사 굴절 광학계 부경 지지대의 형상 최적 설계)

  • Lee, Sang Eun;Kim, Dae Hee;Lee, Tae Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.435-442
    • /
    • 2017
  • A catadioptric optical system produces images by refraction and reflection. To improve the image quality, the shape of the secondary mirror supporters should be determined to ensure that the centering error and tilt of secondary mirror are very small, and the main mirror receives the maximum amount of light. Furthermore, random acceleration vibration has a severe effect on the optical system for observation reconnaissance. In order to obtain the best design under these circumstances, the volume of the secondary mirror supporter must be minimized while satisfying the constraints expressed in standard deviations of the centering error and tilt. It is difficult to analytically calculate the design sensitivities of the standard deviations, because they are statistically defined. Hence, after their second-order regression equations were determined using a response surface methodology, an optimal geometric design was obtained. As a result, it was found that the method proposed in this paper, which included a random vibration analysis, was effective in obtaining the optimal design for a secondary mirror supporter with robustness.