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I. INTRODUCTION

The most useful characteristic of a mirror system is that 

the system does not have any chromatic variation. In the 

conventional axially symmetric configuration, a mirror system 

has a central obstruction and field-of-view restriction due 

to the vignetting effect. Hence, such a mirror system is 

mostly used for narrow-field objectives, such as astronomical 

telescopes and satellite cameras. Off-axial construction of a 

mirror system, however, can overcome the intrinsic problems 

of the conventional configuration, and could be used for 

wide-field applications [1].

In this study we present a new design approach for an 

image-space telecentric two-mirror system, corrected for 

spherical aberration, coma, and field curvature. We are 

interested in the two-mirror system as a possible candidate 

for a line-imaging objective of a hyperspectral imaging 

system [2]. Since an object-space telecentric spectrometer 

is used for the hyperspectral imaging system, image-space 

telecentricity is necessary for the two-mirror system.

Various two-mirror systems with corrected third-order 

aberrations have been known for a long time [3-6]. Because 

of image-space telecentricity, the conventional design approach 

for a two-mirror system can give an aplanatic design only, 

but is insufficient for designing a wide-field objective. 

From the analytic expressions of residual aberrations of the 

aplanatic design, we found that the primary mirror should be 

flat, to obtain a flat-field aplanatic design satisfying image- 

space telecentricity, but the conic constant of the primary 

mirror cannot be used to correct third-order aberrations in 

that case. We overcome this problem using the fourth-order 

aspheric deformation instead of the conic constant.

II. APLANATIC TWO-MIRROR SYSTEM 

A conic surface with axial symmetry about the optical 

axis (z-axis) is defined by 
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where h is the incident height of a ray, r is the radius of 

curvature, and κ is the conic constant of the surface. The 

third-order aberrations of an optical surface are affected 

by the fourth-order term of h. The Maclaurin expansion of 

Eq. (1) yields

≈








 ⋯  (2)

In modern optical design, the general aspheric surface is 

widely used to correct optical aberrations. Let us define a 

general aspheric surface that has fourth-order deformation 

on the sphere as follows:

 






 ⋯  (3)

In this case, the fourth-order deformation A can be 

expressed as





 (4)

For a flat surface (c = 0) the conic constant does not 

give any effect on the surface, but A in Eq. (3) can be 

used to correct third-order aberrations.

A two-mirror system has five design parameters: two 

curvature radii ( ), two conic constants (
 ), and 

the axial distance d between the two mirrors. Figure 1 

shows a two-mirror system and its marginal ray. In Fig. 

1(a), (
 ) are incident heights of the marginal ray, ( 


 ) are paraxial angles after reflection of the ray, and 

(
 

 ) are refractive indices of the medium after 

reflection. We adopt the sign convention of W. T. Welford 

[7, 8], by which the refractive indices are given as 
, 


, and 

. If the incident heights (
 ) and 

the paraxial angles (
 

 ) are known, the curvature 

radii ( ) and the axial distance  are given by: 

 

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In Fig. 1, let us define the ratio of incident heights of 

the marginal ray as , and the transverse magnifications 

of the surfaces (
 ), as the following:
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Then the curvature radii and axial distance can be 

expressed as

 


 




  (11)

 


 

  (12)

 


 
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In Eqs. (11)-(13), (
 

 ) determine the configuration 

of a two-mirror system, and (
 ) are scale factors 

corresponding to the aperture size and effective focal 

length of the system.

The third-order aberrations of a two-mirror system can 

be categorized by two parts: The main ones are the 

contributions of spherical surfaces, and the orders are the 

contributions of aspheric deformations. If the primary 

mirror is the aperture stop of the two-mirror system, then 

the spherical aberration 

, coma 


, astigmatism 


 and 

Petzval field curvature 


 can be expressed as follows:
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FIG. 1. Optical layout of a two-mirror system.
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In Eqs. (14)-(17),  is Lagrange’s invariant, (  

) are the contributions of spherical surfaces to the third- 

order aberrations, and (   ) are the contributions 

of the conic constants (
 ).
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Practically, we are interested in field curvature rather 

than Petzval field curvature. The third-order term of field 

curvature 


 is 
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In Eqs. (14) and (15), 

 and 


 are linear functions of 

 and . The conic constants correcting 

 and 


 are 

given as follows;
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The aplanatic design of a two-mirror system based on 

Eqs. (19) and (20) is the well known Ritchey-Chrétien 

(R-C) system [3]. The residual astigmatism 
 and the 

residual field curvature 
 of the R-C system are
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If we take a suitable combination of (
 

 ), one 

or two kinds of residual aberrations of the R-C system can 

be corrected additionally [3, 6].

III. ABERRATION CORRECTION OF 

A TELECENTRIC SYSTEM

3.1. Stop Position and Telecentric Condition

In this study, the two-mirror system we are designing 

requires image-space telecentricity. The aperture stop of a 

mirror system should be located where the stop does not 

interfere with incoming and outgoing beams. According to 

Fig. 2 there are five possible stop positions in a two-mirror 

system. To satisfy image-space telecentricity, the stop position 

should be the first focal point of the system, so positions 

④ and ⑤ cannot be candidates. If we choose position ①, 

the sizes of the primary mirror M1 and secondary mirror 

M2 become large, which is undesirable. If we choose 

position ③, the tilting angles of M1 and M2 should be 

large enough to avoid ray obstructions by the stop. Hence, 

we choose position ②, the aperture stop at M1. In this 

case we do not need extra mechanical structure for the 

aperture stop, and the diameter of M1 can be minimized.

Since M1 is taken as the aperture stop, the vertex of M1 

should be the first focal point of M2, to satisfy image-space 

telecentricity. The separation between mirrors  should be 

 







(23)

where  is the power of refraction of M2. In this case the 

total power of refraction 


 of the image-space telecentric 

two-mirror system is given by 

FIG. 2. Possible positions of the aperture stop in a two-mirror 

system.
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

  (24)

From Eq. (24), the power of refraction of M1, , does 

not affect 


.  only affects the back focal length (BFL) 

of the system. Eq. (23) can be rewritten as

 
 (25)

which is the telecentric condition where the aperture stop 

is located at the primary mirror.

3.2. Aberration Correction for an Object at Infinity

If the object is located at infinity (
) and M1 has 

power of refraction ≠, then the magnification  is 

zero. In this case, from Eq. (21) the residual astigmatism 

of an R-C system is given by




















 


 (26)

By applying the telecentric condition of Eq. (25) to Eq. 

(26), we obtain the residual astigmatism of the image-space 

telecentric system as











 



  (27)

If the two-mirror system has a specified power, the 

magnification  cannot be infinite. Therefore, if the primary 

mirror has refracting power, the residual astigmatism of 

the image-space telecentric system cannot be corrected. 

Let us consider the residual field curvature. If  equals 

zero, the residual field curvature is 














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
 


 (28)

By applying the telecentric condition to Eq. (28), the 

residual field curvature of the telecentric system is given by



















 


 (29)

If the two-mirror system has a specified refracting power 

and M1 has refracting power, the magnification  cannot 

be zero. Therefore, if the primary mirror is not flat, the 

residual astigmatism and field curvature of the image-space 

telecentric system cannot be corrected. 

Let us consider an image-space telecentric two-mirror 

system having a flat primary mirror. In this case the 

magnification  is 1, and the residual astigmatism of the 

RC system is 











 




  (30)

By applying the telecentric condition to Eq. (30), the 

residual astigmatism of the telecentric system is given by













 (31)

This means that the residual astigmatism cannot be 

corrected. 

Let us now consider the residual field curvature. Applying 

the telecentric condition to Eq. (22), the residual field 

curvature of the telecentric system is given by


 











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







(32)

If  is equal to 1, from Eq. (32) the residual field 

curvature is




 (33)

If the object is located at infinity and the primary 

mirror is flat (
), then  is zero. The residual field 

curvature of the image-space telecentric system can be 

corrected.

As discussed, we can correct the residual field curvature 

of an image-space telecentric system by taking 
 and 


. However, the conic constants 

 , cannot be 

evaluated by Eqs. (19) and (20) in this case, and besides, 

for a flat surface the conic constant cannot be defined. 

Hence the fourth-order deformation term  must be used 

to correct the third-order aberrations. 

Let us define the primary mirror M1 using Eq. (3), a 

general aspheric with fourth-order term . Then  in 

Eq. (19) can be replaced by












 


 






 


 


 



(34)

By applying the telecentric condition to Eq. (34) and 

setting 
 and 

,   correcting spherical aberration 

and coma is given by






 

 









 


 










 


 





(35)
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Let us also consider  in Eq. (20). By the telecentric 

condition,   can be replaced with , and  can 

be expressed as














(36)

For the case of 
, 

, and  , the conic 

constant  is


 (37)

M2 is an oblate ellipsoid. Using Eqs. (35) and (37), 

we can get an image-space telecentric two-mirror system 

corrected for spherical aberration, coma, and field curvature.  

IV. OPTICAL DESIGN AND 

ABERRATION ANALYSIS

In the previous section, a two-mirror system having a 

flat M1 with fourth-order aspheric deformation, and an 

oblate ellipsoidal M2, can be corrected for three kinds of 

third-order aberration: spherical aberration, coma, and field 

curvature. Table 1(a) is an example design of an image- 

space telecentric two-mirror system with an axially symmetric 

configuration. Let us call this the initial design. Since M2 

blocks all of the beams incident upon M1, the initial 

design is just a sample to show the results of the previous 

discussion. The initial design is a fast and wide-field 

mirror system with effective focal length of 100 mm, 

f-number of 2.0, and field angle of 6°. The third-order 

aberrations of the initial design are listed in Table 1(b). 

TABLE 1. Initial design of the telecentric two-mirror system (axially symmetric configuration)

(a) Design data (in mm)

Surface # Curvature radius Axial distance Aspheric deformation Remarks

1

(stop)
- -100.0 


×  General aspheric, 

primary mirror M1

2 200.0  100.0 


Conic surface, 

secondary mirror M2

(b) Third-order aberrations (evaluated by Code V, in mm)

#
Spherical 

aberration

Tangential 

coma

Tangential 

astigmatism

Sagittal 

astigmatism
Petzval blur Distortion Remarks

1

(stop)

0.0000

0.3906

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000 0.0000

0.0000 Aspheric contributions

2
-0.1953

-0.1953

0.1228

-0.1228

0.0086

-0.0257

0.0257

-0.0086

0.0343 -0.0054

-0.0018 Aspheric contributions

SUM 0.0000 0.0000 -0.0172 0.0172 0.0343 -0.0072

FIG. 3. Finite ray aberrations of the initial design.
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Spherical aberration, coma, and field curvature are corrected 

as expected. Figure 3 shows finite ray aberrations of the 

initial design. We can see a good correction of the 

third-order spherical aberration, and good balance between 

tangential and sagittal field curvature.

Figure 4 shows the optical layouts of the decentered 

design (a) and the optimized design (b). The decentered 

design is an off-axial modification of the initial design, to 

avoid ray obstruction. M1 of the decentered design has a 

tilt angle of 16.5°. The line image along the horizontal 

direction (x-axis) can be accessed through the rectangular 

hole in M2. The optimized design is an improved version 

of the decentered design. The prescription for the optimized 

design is listed in Table 2. M1 in the optimized design is 

changed to a very weakly concave mirror. The fourth-order 

aspheric deformation  and conic constant  are changed 

slightly. 

Spot sizes for the initial design (a), the decentered 

design (b), and the optimized design (c) are listed in Table 

3. Figure 5 shows spot diagrams for the three designs. The 

residual wavefront aberrations of the three designs are 

listed in Table 4. The bold entries in Table 4 indicate the 

dominant residual aberrations. The spot diagrams shown in 

Fig. 5(a) and Zernike coefficients listed in Table 4(a) show 

that the primary astigmatism (Z4) is the dominant aberration 

(a)

(b)

FIG. 4. Optical layouts of the telecentric two-mirror designs: 

(a) decentered design; (b) optimized design.

TABLE 2. Optimized design of the telecentric two-mirror system (decentered and optimized for line image along the x-axis, in mm)

Surface # Curvature radius Axial distance Aspheric deformation Remarks

1

(stop)
-8968.6 -100.0 

×  General aspheric,

primary mirror M1

2 200.0 97.757* 



Conic surface,

secondary mirror M2

*distance to the best focus

TABLE 3. RMS spot size of the initial design, the decentered design, and the optimized design, for the best focus (in µm)

Design
Half field angle (x-direction)

0.0° 1.0° 2.0° 3.0°

(a) Initial design (axially symmetric system)   9.7 10.0 14.7 26.4 

(b) Decentered design (tilted M1) 29.8 32.4 40.4 53.9 

(c) Optimized design 16.0 14.8 13.8 21.2

FIG. 5. Spot diagrams for the telecentric two-mirror designs: 

(a) initial design; (b) decentered design; (c) optimized design.



Current Optics and Photonics, Vol. 1, No. 4, August 2017350

of the initial design. From Fig. 5(b) and Table 3(b), quite 

large astigmatisms (Z4, Z6, and Z12) were introduced in 

the decentered system because of M1’s tilt. With optimi-

zation, the imaging performance of the optimized design 

improved, but the residual astigmatisms are the limiting 

factors. If we were to use anamorphic surfaces, then the 

residual aberrations might be corrected, but we use only 

axially symmetric surfaces, for easy fabrication and assembly.

V. CONCLUSION

In this paper, we present a new design approach and 

example design for a two-mirror system with the aperture 

stop lying on the primary mirror M1, and which satisfies 

image-space telecentricity. From the analytic expressions 

for residual aberrations of the Ritchey-Chrétien system, we 

show that the residual astigmatism cannot be corrected if 

the object is at infinity, but the residual field curvature can 

be corrected by using a flat primary mirror M1. Since the 

conic constant cannot be defined for a flat M1, for correction 

we use the fourth-order aspheric deformation  instead of 

the conic constant. 

As an example, an optimized design for a two-mirror 

system that satisfies image-space telecentricity is presented. 

Since the initial design corrected for spherical aberration, 

coma, and field curvature has an axially symmetric configu-

ration, the rays incident to the primary mirror M1 are 

obscured by the secondary mirror. Hence a tilted M1 is 

used for redesigning the two-mirror system to avoid ray 

obscuration. The optimized system is designed for a fast 

and wide-field line imaging objective of f-2.0 and 6° field 

of view. The effective focal length of the system is 100 

mm. Even though the design uses only two axially symmetric 

mirrors (for easy fabrication and alignment), it shows quiet 

good performance, for a line imager. The RMS spot sizes 

of the optimized design are smaller than 22 µm.
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14 Astigmatism, secondary (axis at ±45°) 0.00 0.00 0.00 0.39 0.00 0.35 

25 Spherical aberration, secondary 0.07 0.07 0.09 0.09 -0.02 0.08
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