• Title/Summary/Keyword: Secondary metabolite biosynthesis

Search Result 54, Processing Time 0.023 seconds

Improvement of Cyclosporin A Hydroxylation in Sebekia benihana by Conjugational Transfer of Streptomyces coelicolor SCO4967, a Secondary Metabolite Regulatory Gene (Sebekia benihana에서 Streptomyces coelicolor SCO4967 유전자 도입을 통한 하이드록실 사이클로스포린 A의 생전환)

  • Kim, Hyun-Bum;Lee, Mi-Jin;Han, Kyu-Boem;Kim, Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.475-480
    • /
    • 2010
  • Actinomycetes are Gram-positive soil bacteria and one of the most important industrial microorganisms due to superior biosynthetic capabilities of many valuable secondary metabolites as well as production of various valuable bioconversion enzymes. Among them are cytochrome P450 hydroxylase (CYP), which are hemoproteins encoded by a super family of genes, are universally distributed in most of the organisms from all biological kingdoms. Actinomycetes are a rich source of soluble CYP enzymes, which play critical roles in the bioactivation and detoxification of a wide variety of metabolite biosynthesis and xenobiotic transformation. Cyclosporin A (CyA), one of the most commonly-prescribed immunosuppressive drugs, was previously reported to be hydroxylated at the position of 4th N-methyl leucine by a rare actinomycetes called Sebekia benihana, leading to display different biological activity spectrum such as loss of immunosuppressive activities yet retaining hair growth-stimulating side effect. In order to improve this regio-selective CyA hydroxylation in S. benihana, previously-identified several secondary metabolite up-regulatory genes from Streptomyces coelicolor and S. avermitilis were heterologously overexpressed in S. benihana using an $ermE^*$ promoter-containing Streptomyces integrative expression vector. Among tested, SCO4967 encoding a conserved hypothetical protein significantly stimulated region-specific CyA hydroxylation in S. benihana, implying that some common regulatory systems functioning in both biosynthesis and bioconversion of secondary metabolite might be present in different actinomycetes species.

Synthesis of unnatural compounds by enzyme engineering

  • Morita, Hiroyuki
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.34-34
    • /
    • 2019
  • About 60% of the present drugs were developed from natural products with unique chemical diversity and biological activities. Hence, discovery of new bioactive compounds from natural products is still important for the drug development. On the other hand, breakthrough made in synthetic biology has also begun to supply us with many useful compounds through manipulation of biosynthetic gene for secondary metabolites. Theoretically, this approach can also be exploited to generate new unnatural compounds by intermixing genes from different biosynthetic pathway. Considering the potential, we are studying about bioactive compounds in natural sources, as well as the biosynthesis of natural products including engineering of the secondary metabolite enzymes to make new compounds in order to construct the methodological basis of the synthetic biology. In this symposium, engineering of secondary metabolite enzymes that are involved in the biosynthesis of plant polyketides to generate new compounds in our laboratory will be mainly introduced.

  • PDF

Enhanced Secondary Metabolite Biosynthesis by Abiotic Elicitor in Transformed Plant Root System

  • Jeong, Gwi-Taek;Hwang, Baik;Woo, Je-Chang;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.417-420
    • /
    • 2005
  • Plants generally produce secondary metabolites in nature as a defense mechanism against pathogenic and insect attack. In this study, we applied several abiotic elicitors in order to enhance growth and ginseng saponin biosynthesis in the hairy roots of P. ginseng. Generally, elicitor treatments were found to inhibit the growth of the hairy roots, although simultaneously enhancing ginseng saponin biosynthesis. The addition of selenium at inoculum time did not significantly affect ginseng saponin biosynthesis. However, when 0.5 mM selenium was added as an elicitor after 21 days of culture, ginseng saponin content and productivity increased to about 1.31 and 1.33 times control levels, respectively. These results suggest that processing time for the generation of ginseng saponin in a hairy root culture can be reduced via the application of an elicitor.

  • PDF

Inactivation of the genes involved in histone H3-lysine 4 methylation abates the biosynthesis of pigment azaphilone in Monascus purpureus

  • Balakrishnan, Bijinu;Lim, Yoon Ji;Suh, Jae-Won;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.2
    • /
    • pp.157-165
    • /
    • 2019
  • Di- and tri-methylation of lysine 4 on histone H3 (H3K4me2 and H3K4me3, respectively) are epigenetic markers of active genes. Complex associated with Set1 (COMPASS) mediates these H3K4 methylations. The involvement of COMPASS activity in secondary metabolite (SM) biosynthesis was first demonstrated with an Aspergillus nidulans cclA knockout mutant. The cclA knockout induced the transcription of two cryptic SM biosynthetic gene clusters, leading to the production of the cognate SM. Monascus spp. are filamentous fungi that have been used for food fermentation in eastern Asia, and the pigment Monascus azaphione (MAz) is their main SM. Monascus highly produces MAz, implying that the cognate biosynthetic genes are highly active in transcription. In the present study, we examined how COMPASS activity modulates MAz biosynthesis by inactivating Monascus purpureus cclA (Mp-cclA) and swd1 (Mp-swd1). For both ${\Delta}Mp-cclA$ and ${\Delta}Mp-swd1$, a reduction in MAz production, accompanied by an abated cell growth, was observed. Suppression of MAz production was more effective in an agar culture than in the submerged liquid culture. The fidelity of the ${\Delta}Mp-swd1$ phenotypes was verified by restoring the WT-like phenotypes in a reversion recombinant mutant, namely, trpCp: Mp-swd1, that was generated from the ${\Delta}Mp-swd1$ mutant. Real-time quantitative Polymerase chain reaction analysis indicated that the transcription of MAz biosynthetic genes was repressed in the ${\Delta}Mp-swd1$ mutant. This study demonstrated that MAz biosynthesis is under the control of COMPASS activity and that the extent of this regulation is dependent on growth conditions.

Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents

  • Cho, Myung-A;Han, Songhee;Lim, Young-Ran;Kim, Vitchan;Kim, Harim;Kim, Donghak
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • The study of the genus Streptomyces is of particular interest because it produces a wide array of clinically important bioactive molecules. The genomic sequencing of many Streptomyces species has revealed unusually large numbers of cytochrome P450 genes, which are involved in the biosynthesis of secondary metabolites. Many macrolide biosynthetic pathways are catalyzed by a series of enzymes in gene clusters including polyketide and non-ribosomal peptide synthesis. In general, Streptomyces P450 enzymes accelerate the final, post-polyketide synthesis steps to enhance the structural architecture of macrolide chemistry. In this review, we discuss the major Streptomyces P450 enzymes research focused on the biosynthetic processing of macrolide therapeutic agents, with an emphasis on their biochemical mechanisms and structural insights.

Monascus sp. 의 적색색소생성에 대한 용존산소량의 영향

  • Park, No-Hwan;Seong, Mun-Su;O, Yeong-Suk;Jeong, Uk-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.267-270
    • /
    • 2000
  • In general, pigment production can be influenced by the medium composition, pH and physical factors such as aeration, agitation, and visible light. The influence of gaseous environments on the pigment production by Monascus purpureus ATCC 16365 was investigated by controlling the DO (dissolved oxygen) concentration through aeration and agitation. When the DO concentration was controlled below 20%, the production of red pigment significantly increased whereas the biomass production decreased. Therefore, the dissolved oxygen concentration could significantly affect the biosynthesis of red pigment as a secondary metabolite by a wild-type filamentous fungus under the anaerobic condition. The results indicate a high potential of enhancing the productivity of the red pigment as a secondary metabolite through controlling the DO concentration.

  • PDF

Overexpression of afsR and Optimization of Metal Chloride to Improve Lomofungin Production in Streptomyces lomondensis S015

  • Wang, Wei;Wang, Huasheng;Hu, Hongbo;Peng, Huasong;Zhang, Xuehong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.672-680
    • /
    • 2015
  • As a global regulatory gene in Streptomyces, afsR can activate the biosynthesis of many secondary metabolites. The effect of afsR on the biosynthesis of a phenazine metabolite, lomofungin, was studied in Streptomyces lomondensis S015. There was a 2.5-fold increase of lomofungin production in the afsR-overexpressing strain of S. lomondensis S015 N1 compared with the wild-type strain. Meanwhile, the transcription levels of afsR and two important genes involved in the biosynthesis of lomofungin (i.e., phzC and phzE) were significantly upregulated in S. lomondensis S015 N1. The optimization of metal chlorides was investigated to further increase the production of lomofungin in the afsR-overexpressing strain. The addition of different metal chlorides to S. lomondensis S015 N1 cultivations showed that CaCl2, FeCl2, and MnCl2 led to an increase in lomofungin biosynthesis. The optimum concentrations of these metal chlorides were obtained using response surface methodology. CaCl2 (0.04 mM), FeCl2 (0.33 mM), and MnCl2 (0.38 mM) gave a maximum lomofungin production titer of 318.0 ± 10.7 mg/l, which was a 4.1-fold increase compared with that of S. lomondensis S015 N1 without the addition of a metal chloride. This work demonstrates that the biosynthesis of phenazine metabolites can be induced by afsR. The results also indicate that metal chlorides addition might be a simple and useful strategy for improving the production of other phenazine metabolites in Streptomyces.

Regulation of Cell Growth and Tylosin Biosynthesis through Flux Control of Metabolic Intermediate in Streptomyces fradiae (Streptomyces fradiae에서 대사중간산물 이용속도에 의한 균체 성장과 tylosin 생합성의 조절)

  • 강현아;이계준
    • Korean Journal of Microbiology
    • /
    • v.25 no.3
    • /
    • pp.189-197
    • /
    • 1987
  • The aim of the present study was to investigate the effect of glutamate on the biosynthesis of tylosin. Activities of enzymes involved in the metabolic pathway of glutamate to form tylactone, an essential precursor of tylosin, were determined using Streptomyces fradiae grown at different concentration of glutamate. As results, it was found that cell growth and tylactone formation was controlled by the metabolic flux of oxaloacetate. It was clear that cell growth was favored by the activities of citrate synthase and aspartate aminotransferase, while the tylactone synthesis was stimulated by the activity of methylmalonyl-CoA carboxyltransferase. Therefore it was concluded that channelling of oxaloacetate was a point for favoring either cell growth or tylosin biosynthesis.

  • PDF

Comparative Evaluation of Modified Bioreactors for Enhancement of Growth and Secondary Metabolite Biosynthesis Using Panax ginseng Hairy Roots

  • Jeong, Gwi-Taek;Park, Don-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.528-534
    • /
    • 2005
  • Hairy root cultures have demonstrated great promise in terms of their biosynthetic capability toward the production of secondary metabolites, but continue to constitute a major challenge with regard to large-scale cultures. In order to assess the possibility of conducting mass production of biomass, and the extraction of useful metabolites from Panax ginseng. P. ginseng hairy roots, transformed by Rhizobium rhizogenes KCTC 2744, were used in bioreactors of different types and sizes. The most effective mass production of hairy roots was achieved in several differently Sized air bubble bioreactors compared to all other bioreactor types. Hairy root growth was enhanced by aeration, and the production increased with increasing aeration rate in a 1 L bioreactor culture. It was determined that the hairy root growth rate could be substantially enhanced by increases in the aeration rate upto 0.5vvm, but at aeration rates above 0.5vvm, only slight promotions in growth rates were observed. In 20 L air bubble bioreactors, with a variety of inoculum sizes, the hairy roots exhibited the most robust growth rates with an inoculum size of 0.1% (w/v), within the range 0.1 to 0.7% (w/v). The specific growth rates of the hairy root decreased with increases in the inoculum size.

Studies of Cyclosporin A Biosynthesis under the Conditions of Limited Dissolved Oxygen or Carbon Source in Fed-batch Culture (용존산소 제한 또는 탄소원 제한 조건의 유가식배양에서의 Cyclosporin A 생합성 연구)

  • 전계택;박성관;권호균;정연호;정용섭;장용근;이영행
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.203-208
    • /
    • 1998
  • We investigated the effects of dissolved oxygen (D.O.) and fructose (C-source) on cell growth and biosynthesis of cyclosporin A (CyA) produced as a secondary metabolite by a wild-type filamentous fungus, Tolypocladium inflatum. This was performed by controlling the level of D.O. and the residual C-source, as required, through adjustment of medium flow rate, medium concentration and agitation rate in fed-batch cultures. CyA production was furned out to be maximal, when D.O. level was controlled around 10% saturated D.O. and concentration of the C-source was maintained sufficiently low (below 2 g/L) not to cause carbon catabolite repression. Under this culture condition, we obtained the highest values of CyA concentration (507.14 mg/L), Qp (2.11 mg CyA/L/hr), $Y_x/s$ (0.49 g DCW/g fructose), $Y_p/s$<(22.56 mg CyA/g fructose), and YTEX>$_p/x$ (48.31 mg CyA/g DCW), but relatively lower values of cell concentration (11.98 g DCW/L) and cell productivity (0.043 g DCW/L/hr), in comparison with other parallel fed-batch fermentation conditions. These results implied that, in the carbon-limited culture with 10% saturated D.O. level, the producer microorganism utilized the C-source more efficiently for secondary metabolism.

  • PDF