Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.183

Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents  

Cho, Myung-A (Department of Biological Sciences, Konkuk University)
Han, Songhee (Department of Biological Sciences, Konkuk University)
Lim, Young-Ran (Department of Biological Sciences, Konkuk University)
Kim, Vitchan (Department of Biological Sciences, Konkuk University)
Kim, Harim (Department of Biological Sciences, Konkuk University)
Kim, Donghak (Department of Biological Sciences, Konkuk University)
Publication Information
Biomolecules & Therapeutics / v.27, no.2, 2019 , pp. 127-133 More about this Journal
Abstract
The study of the genus Streptomyces is of particular interest because it produces a wide array of clinically important bioactive molecules. The genomic sequencing of many Streptomyces species has revealed unusually large numbers of cytochrome P450 genes, which are involved in the biosynthesis of secondary metabolites. Many macrolide biosynthetic pathways are catalyzed by a series of enzymes in gene clusters including polyketide and non-ribosomal peptide synthesis. In general, Streptomyces P450 enzymes accelerate the final, post-polyketide synthesis steps to enhance the structural architecture of macrolide chemistry. In this review, we discuss the major Streptomyces P450 enzymes research focused on the biosynthetic processing of macrolide therapeutic agents, with an emphasis on their biochemical mechanisms and structural insights.
Keywords
Streptomyces; P450; CYP; Biosynthesis; Macrolide; Secondary metabolite;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Chung, L., Liu, L., Patel, S., Carney, J. R. and Reeves, C. D. (2001) Deletion of rapQONML from the rapamycin gene cluster of Streptomyces hygroscopicus gives production of the 16-O-desmethyl-27-desmethoxy analog. J. Antibiot. (Tokyo) 54, 250-256.   DOI
2 Cupp-Vickery, J. R., Garcia, C., Hofacre, A. and McGee-Estrada, K. (2001) Ketoconazole-induced conformational changes in the active site of cytochrome P450eryF. J. Mol. Biol. 311, 101-110.   DOI
3 Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y. and Liang, J. (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34, W116-W118.   DOI
4 Dyson, P. (2011) Streptomyces: Molecular Biology and Biotechnology. Caister Academic Press, Norfolk, UK.
5 Graziani, E. I. (2009) Recent advances in the chemistry, biosynthesis and pharmacology of rapamycin analogs. Nat. Prod. Rep. 26, 602-609.   DOI
6 Guengerich, F. P. (2001) Analysis and characterization of enzymes and nucleic acids. In Principles and Methods of Toxicology (A. W. Hayes, Ed.), pp. 1625-1687. Taylor & Francis, Philadelphia.
7 Gust, B., Challis, G. L., Fowler, K., Kieser, T. and Chater, K. F. (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. U.S.A. 100, 1541-1546.   DOI
8 Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Cha, G. S., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2015) Functional characterization of CYP107W1 from Streptomyces avermitilis and biosynthesis of macrolide oligomycin A. Arch. Biochem. Biophys. 575, 1-7.   DOI
9 Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Cha, G. S., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2016) Structural analysis of the Streptomyces avermitilis CYP107W1-Oligomycin a complex and role of the Tryptophan 178 residue. Mol. Cells 39, 211-216.   DOI
10 Han, S., Pham, T. V., Kim, J. H., Lim, Y. R., Park, H. G., Jeong, D., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2017) Structural insights into the binding of lauric acid to CYP107L2 from Streptomyces avermitilis. Biochem. Biophys. Res. Commun. 482, 902-908.   DOI
11 He, W., Wu, L., Gao, Q., Du, Y. and Wang, Y. (2006) Identification of AHBA biosynthetic genes related to geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Curr. Microbiol. 52, 197-203.   DOI
12 Ikeda, H. (2017) Natural products discovery from micro-organisms in the post-genome era. Biosci. Biotechnol. Biochem. 81, 13-22.   DOI
13 Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi, H., Shiba, T., Sakaki, Y., Hattori, M. and Omura, S. (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526-531.   DOI
14 Ikeda, H. and Omura, S. (1997) Avermectin biosynthesis. Chem. Rev. 97, 2591-2610.   DOI
15 Jakeman, D. L., Bandi, S., Graham, C. L., Reid, T. R., Wentzell, J. R. and Douglas, S. E. (2009) Antimicrobial activities of jadomycin B and structurally related analogues. Antimicrob. Agents Chemother. 53, 1245-1247.   DOI
16 Kumar, Y. and Goodfellow, M. (2008) Five new members of the Streptomyces violaceusniger 16S rRNA gene clade: Streptomyces castelarensis sp. nov., comb. nov., Streptomyces himastatinicus sp. nov., Streptomyces mordarskii sp. nov., Streptomyces rapamycinicus sp. nov. and Streptomyces ruanii sp. nov. Int. J. Syst. Evol. Microbiol. 58, 1369-1378.   DOI
17 Lamb, D. C., Ikeda, H., Nelson, D. R., Ishikawa, J., Skaug, T., Jackson, C., Omura, S., Waterman, M. R. and Kelly, S. L. (2003) Cytochrome p450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2). Biochem. Biophys. Res. Commun. 307, 610-619.   DOI
18 Molnar, I., Aparicio, J. F., Haydock, S. F., Khaw, L. E., Schwecke, T., Konig, A., Staunton, J. and Leadlay, P. F. (1996) Organisation of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of genes flanking the polyketide synthase. Gene 169, 1-7.   DOI
19 Kumar, Y. and Goodfellow, M. (2010) Reclassification of Streptomyces hygroscopicus strains as Streptomyces aldersoniae sp. nov., Streptomyces angustmyceticus sp. nov., comb. nov., Streptomyces ascomycinicus sp. nov., Streptomyces decoyicus sp. nov., comb. nov., Streptomyces milbemycinicus sp. nov. and Streptomyces wellingtoniae sp. nov. Int. J. Syst. Evol. Microbiol. 60, 769-775.   DOI
20 Lamb, D. C., Guengerich, F. P., Kelly, S. L. and Waterman, M. R. (2006) Exploiting Streptomyces coelicolor A3(2) P450s as a model for application in drug discovery. Expert Opin. Drug Metab. Toxicol. 2, 27-40.   DOI
21 Lamb, D. C., Lei, L., Zhao, B., Yuan, H., Jackson, C. J., Warrilow, A. G., Skaug, T., Dyson, P. J., Dawson, E. S., Kelly, S. L., Hachey, D. L. and Waterman, M. R. (2010) Streptomyces coelicolor A3(2) CYP102 protein, a novel fatty acid hydroxylase encoded as a heme domain without an N-terminal redox partner. Appl. Environ. Microbiol. 76, 1975-1980.   DOI
22 Lamb, D. C., Skaug, T., Song, H. L., Jackson, C. J., Podust, L. M., Waterman, M. R., Kell, D. B., Kelly, D. E. and Kelly, S. L. (2002) The cytochrome P450 complement (CYPome) of Streptomyces coelicolor A3(2). J. Biol. Chem. 277, 24000-24005.   DOI
23 Lamb, D. C., Zhao, B., Guengerich, F. P., Kelly, S. L. and Waterman, M. R. (2011) Genomics of Streptomyces cytochrome P450. In Streptomyces Molecular Biology and Biotechnology (P. Dyson, Ed.), pp. 233-253. Caister Academic Press, Norfolk, UK.
24 Niraula, N. P., Bhattarai, S., Lee, N. R., Sohng, J. K. and Oh, T. J. (2012) Biotransformation of flavone by CYP105P2 from Streptomyces peucetius. J. Microbiol. Biotechnol. 22, 1059-1065.   DOI
25 Moody, S. C., Zhao, B., Lei, L., Nelson, D. R., Mullins, J. G., Waterman, M. R., Kelly, S. L. and Lamb, D. C. (2012) Investigating conservation of the albaflavenone biosynthetic pathway and CYP170 bifunctionality in Streptomycetes. FEBS J. 279, 1640-1649.   DOI
26 Mukherjee, S. and Mukherjee, U. (2009) A comprehensive review of immunosuppression used for liver transplantation. J. Transplant. 2009, 701464.
27 Nagano, S., Cupp-Vickery, J. R. and Poulos, T. L. (2005) Crystal structures of the ferrous dioxygen complex of wild-type cytochrome P450eryF and its mutants, A245S and A245T: investigation of the proton transfer system in P450eryF. J. Biol. Chem. 280, 22102-22107.   DOI
28 Oliynyk, M., Samborskyy, M., Lester, J. B., Mironenko, T., Scott, N., Dickens, S., Haydock, S. F. and Leadlay, P. F. (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat. Biotechnol. 25, 447-453.   DOI
29 Ortiz de Montellano, P. R. (2005) In Cytochrome P450: Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, Ed.). Plenum Press, New York.
30 Otten, S. L., Liu, X., Ferguson, J. and Hutchinson, C. R. (1995) Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyl transferase involved in daunorubicin biosynthesis. J. Bacteriol. 177, 6688-6692.   DOI
31 Lim, Y. R., Han, S., Kim, J. H., Park, H. G., Lee, G. Y., Le, T. K., Yun, C. H. and Kim, D. (2017) Characterization of a Biflaviolin Synthase CYP158A3 from Streptomyces avermitilis and its role in the biosynthesis of secondary metabolites. Biomol. Ther. (Seoul) 25, 171-176.   DOI
32 Xu, L. H., Fushinobu, S., Takamatsu, S., Wakagi, T., Ikeda, H. and Shoun, H. (2010) Regio- and stereospecificity of filipin hydroxylation sites revealed by crystal structures of cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis. J. Biol. Chem. 285, 16844-16853.   DOI
33 Xu, L. H., Ikeda, H., Liu, L., Arakawa, T., Wakagi, T., Shoun, H. and Fushinobu, S. (2015) Structural basis for the 4'-hydroxylation of diclofenac by a microbial cytochrome P450 monooxygenase. Appl. Microbiol. Biotechnol. 99, 3081-3091.   DOI
34 Xue, Y., Wilson, D., Zhao, L., Liu, H. and Sherman, D. H. (1998a) Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Chem. Biol. 5, 661-667.   DOI
35 Lee, C. W., Lee, J. H., Rimal, H., Park, H. and Oh, T. J. (2016) Crystal Structure of Cytochrome P450 (CYP105P2) from Streptomyces peucetius and its conformational changes in response to substrate binding. Int. J. Mol. Sci. 17, 813.   DOI
36 Lee, D., Lee, K., Cai, X. F., Dat, N. T., Boovanahalli, S. K., Lee, M., Shin, J. C., Kim, W., Jeong, J. K., Lee, J. S., Lee, C. H., Lee, J. H., Hong, Y. S. and Lee, J. J. (2006) Biosynthesis of the heat-shock protein 90 inhibitor geldanamycin: new insight into the formation of the benzoquinone moiety. Chembiochem. 7, 246-248.   DOI
37 Lim, Y. R., Hong, M. K., Kim, J. K., Doan, T. T., Kim, D. H., Yun, C. H., Chun, Y. J., Kang, L. W. and Kim, D. (2012) Crystal structure of cytochrome P450 CYP105N1 from Streptomyces coelicolor, an oxidase in the coelibactin siderophore biosynthetic pathway. Arch. Biochem. Biophys. 528, 111-117.   DOI
38 Lomovskaya, N., Otten, S. L., Doi-Katayama, Y., Fonstein, L., Liu, X. C., Takatsu, T., Inventi-Solari, A., Filippini, S., Torti, F., Colombo, A. L. and Hutchinson, C. R. (1999) Doxorubicin overproduction in Streptomyces peucetius: cloning and characterization of the dnrU ketoreductase and dnrV genes and the doxA cytochrome P-450 hydroxylase gene. J. Bacteriol. 181, 305-318.   DOI
39 Parajuli, N., Basnet, D. B., Chan Lee, H., Sohng, J. K. and Liou, K. (2004) Genome analyses of Streptomyces peucetius ATCC 27952 for the identification and comparison of cytochrome P450 complement with other Streptomyces. Arch. Biochem. Biophys. 425, 233-241.   DOI
40 Pandey, B. P., Roh, C., Choi, K. Y., Lee, N., Kim, E. J., Ko, S., Kim, T., Yun, H. and Kim, B. G. (2010) Regioselective hydroxylation of daidzein using P450 (CYP105D7) from Streptomyces avermitilis MA4680. Biotechnol. Bioeng. 105, 697-704.   DOI
41 Podust, L. M., Bach, H., Kim, Y., Lamb, D. C., Arase, M., Sherman, D. H., Kelly, S. L. and Waterman, M. R. (2004) Comparison of the 1.85 A structure of CYP154A1 from Streptomyces coelicolor A3(2) with the closely related CYP154C1 and CYPs from antibiotic biosynthetic pathways. Protein Sci. 13, 255-268.   DOI
42 Podust, L. M., Kim, Y., Arase, M., Neely, B. A., Beck, B. J., Bach, H., Sherman, D. H., Lamb, D. C., Kelly, S. L. and Waterman, M. R. (2003) The 1.92-A structure of Streptomyces coelicolor A3(2) CYP154C1. A new monooxygenase that functionalizes macrolide ring systems. J. Biol. Chem. 278, 12214-12221.   DOI
43 Rimal, H., Yu, S. C., Lee, J. H., Tokutaro, Y. and Oh, T. J. (2018) Hydroxylation of Resveratrol with DoxA In Vitro: An Enzyme with the Potential for the Bioconversion of a Bioactive Stilbene. J. Microbiol. Biotechnol. 28, 561-565.   DOI
44 Xue, Y., Zhao, L., Liu, H. W. and Sherman, D. H. (1998b) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc. Natl. Acad. Sci. U.S.A. 95, 12111-12116.   DOI
45 Madduri, K. and Hutchinson, C. R. (1995) Functional characterization and transcriptional analysis of a gene cluster governing early and late steps in daunorubicin biosynthesis in Streptomyces peucetius. J. Bacteriol. 177, 3879-3884.   DOI
46 McCarthy, A. J. and Williams, S. T. (1992) Actinomycetes as agents of biodegradation in the environment-a review. Gene 115, 189-192.   DOI
47 Zhao, B., Guengerich, F. P., Voehler, M. and Waterman, M. R. (2005) Role of active site water molecules and substrate hydroxyl groups in oxygen activation by cytochrome P450 158A2: a new mechanism of proton transfer. J. Biol. Chem. 280, 42188-42197.   DOI
48 Zhao, B., Lamb, D. C., Lei, L., Kelly, S. L., Yuan, H., Hachey, D. L. and Waterman, M. R. (2007) Different binding modes of two flaviolin substrate molecules in cytochrome P450 158A1 (CYP158A1) compared to CYP158A2. Biochemistry 46, 8725-8733.   DOI
49 Zhao, B., Lei, L., Vassylyev, D. G., Lin, X., Cane, D. E., Kelly, S. L., Yuan, H., Lamb, D. C. and Waterman, M. R. (2009) Crystal structure of albaflavenone monooxygenase containing a moonlighting terpene synthase active site. J. Biol. Chem. 284, 36711-36719.   DOI
50 Zhao, B., Moody, S. C., Hider, R. C., Lei, L., Kelly, S. L., Waterman, M. R. and Lamb, D. C. (2012) Structural analysis of cytochrome P450 105N1 involved in the biosynthesis of the zincophore, coelibactin. Int. J. Mol. Sci. 13, 8500-8513.   DOI
51 Rudolf, J. D., Chang, C. Y., Ma, M. and Shen, B. (2017) Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat. Prod. Rep. 34, 1141-1172.   DOI
52 Song, J. Y., Yoo, Y. J., Lim, S. K., Cha, S. H., Kim, J. E., Roe, J. H., Kim, J. F. and Yoon, Y. J. (2016) Complete genome sequence of Streptomyces venezuelae ATCC 15439, a promising cell factory for production of secondary metabolites. J. Biotechnol. 219, 57-58.   DOI
53 Savino, C., Montemiglio, L. C., Sciara, G., Miele, A. E., Kendrew, S. G., Jemth, P., Gianni, S. and Vallone, B. (2009) Investigating the structural plasticity of a cytochrome P450: three-dimensional structures of P450 EryK and binding to its physiological substrate. J. Biol. Chem. 284, 29170-29179.   DOI
54 Shafiee, A. and Hutchinson, C. R. (1987) Macrolide antibiotic biosynthesis: isolation and properties of two forms of 6-deoxyerythronolide B hydroxylase from Saccharopolyspora erythraea (Streptomyces erythreus). Biochemistry 26, 6204-6210.   DOI
55 Sherman, D. H., Li, S., Yermalitskaya, L. V., Kim, Y., Smith, J. A., Waterman, M. R. and Podust, L. M. (2006) The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae. J. Biol. Chem. 281, 26289-26297.   DOI
56 Stach, J. E. and Bull, A. T. (2005) Estimating and comparing the diversity of marine actinobacteria. Antonie Van Leeuwenhoek 87, 3-9.   DOI
57 Stassi, D., Donadio, S., Staver, M. J. and Katz, L. (1993) Identification of a Saccharopolyspora erythraea gene required for the final hydroxylation step in erythromycin biosynthesis. J. Bacteriol. 175, 182-189.   DOI
58 Tian, Z., Cheng, Q., Yoshimoto, F. K., Lei, L., Lamb, D. C. and Guengerich, F. P. (2013) Cytochrome P450 107U1 is required for sporulation and antibiotic production in Streptomyces coelicolor. Arch. Biochem. Biophys. 530, 101-107.   DOI
59 Vezina, C., Kudelski, A. and Sehgal, S. N. (1975) Rapamycin (AY- 22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo) 28, 721-726.   DOI
60 Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G. F., Chater, K. F. and van Sinderen, D. (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71, 495-548.   DOI
61 Wu, H., Qu, S., Lu, C., Zheng, H., Zhou, X., Bai, L. and Deng, Z. (2012) Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008. BMC Genomics 13, 337.   DOI
62 Xu, L. H., Fushinobu, S., Ikeda, H., Wakagi, T. and Shoun, H. (2009) Crystal structures of cytochrome P450 105P1 from Streptomyces avermitilis: conformational flexibility and histidine ligation state. J. Bacteriol. 191, 1211-1219.   DOI
63 Alayev, A. and Holz, M. K. (2013) mTOR signaling for biological control and cancer. J. Cell Physiol. 228, 1658-1664.   DOI
64 Baranasic, D., Gacesa, R., Starcevic, A., Zucko, J., Blazic, M., Horvat, M., Gjuracic, K., Fujs, S., Hranueli, D., Kosec, G., Cullum, J. and Petkovic, H. (2013) Draft genome sequence of Streptomyces rapamycinicus Strain NRRL 5491, the producer of the immunosuppressant rapamycin. Genome Announc. 1, e00581-13.
65 Bradley, S. G. and Ritzi, D. (1968) Composition and ultrastructure of Streptomyces venezuelae. J. Bacteriol. 95, 2358-2364.   DOI
66 Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C. H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., Rajandream, M. A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B. G., Parkhill, J. and Hopwood, D. A. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141-147.   DOI
67 Berdy, J. (2005) Bioactive microbial metabolites. J. Antibiot. (Tokyo) 58, 1-26.   DOI
68 Bhattarai, S., Liou, K. and Oh, T. J. (2013) Hydroxylation of long chain fatty acids by CYP147F1, a new cytochrome P450 subfamily protein from Streptomyces peucetius. Arch. Biochem. Biophys. 539, 63-69.   DOI
69 Chater, K. F. and Chandra, G. (2006) The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol. Rev. 30, 651-672.   DOI
70 Chun, Y. J., Shimada, T., Sanchez-Ponce, R., Martin, M. V., Lei, L., Zhao, B., Kelly, S. L., Waterman, M. R., Lamb, D. C. and Guengerich, F. P. (2007) Electron transport pathway for a Streptomyces cytochrome P450: cytochrome P450 105D5-catalyzed fatty acid hydroxylation in Streptomyces coelicolor A3(2). J. Biol. Chem. 282, 17486-17500.   DOI
71 Chun, Y. J., Shimada, T., Waterman, M. R. and Guengerich, F. P. (2006) Understanding electron transport systems of Streptomyces cytochrome P450. Biochem. Soc. Trans. 34, 1183-1185.   DOI