• Title/Summary/Keyword: Secondary batteries

Search Result 393, Processing Time 0.027 seconds

A Relation between the Electrochemical Behaviors and Morphology of Co3O4 and Ni-Co3O4 Composites as Anode Materials for Li Ion Secondary Batteries (리툼 이차 전지용 Co3O4 및 Ni-Co3O4 복합물의 전기화학적 특성 및 표면 형상의 관계)

  • Kang, Yong-Mook;Lee, Yong-Ju;Song, Min-Sang;Park, Min-Sik;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.217-228
    • /
    • 2003
  • Li 이차 전지 음극용 활물질인 $Co_3O_4$의 초기 충방전 효율을 향상시키기 위해 chemical reduction method나 mechanical milling법을 이용하여 $Co_3O_4$에 Ni을 첨가하여 $Ni-Co_3O_4$, 복합물을 제조하였다. 그 결과 초기 충방전 효율이 약 69%에 불과한 $Co_3O_4$에 비해 mechanical milling법을 이용하여 제조된 $Ni-Co_3O_4$ 복합물은 약 79%이상의 대폭 향상된 초기 충방전 효율 특성을 나타내었다. 하지만 chemical reduction method를 이용하여 제조된 $Ni-Co_3O_4$ 복합물은 약 71%의 초기 충방전 효율 특성만을 나타내었다. SEM 분석을 통해 각 물질의 표면 형상을 관찰한 결과 mechanical milling법과 chemical reduction method를 통해 제조된 $Ni-Co_3O_4$ 복합물에서는 $Co_3O_4$ 표면에 분포된 Ni의 균일성의 차이가 존재하였다. $Co_3O_4$$Li_2O$의 분해, 형성에 의해 충방전되고 Ni이 $Li_2O$의 분해를 촉진시키는 효과를 가지고 있음을 고려할 때 이러한 균일성의 차이는 결국 Ni 과 $Co_3O_4$ 사이의 접촉면적의 차이로 이어져 $Ni-Co_3O_4$ 복합물의 초기 충방전 효율 특성이 그 제조 방법에 따라 달라지는 것으로 보인다.

Effect of Low Temperature Heat Treatment on the Physical and Chemical Properties of Carbon Anode Materials and the Performance of Secondary Batteries (저온 열처리가 탄소 음극재의 물리·화학적 특성 및 이차전지 성능에 미치는 영향)

  • Whang, Tae Kyung;Kim, Ji Hong;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.83-90
    • /
    • 2021
  • In this study, effects of the physical and chemical properties of low temperature heated carbon on electrochemical behavior as a secondary battery anode material were investigated. A heat treatment at 600 ℃ was performed for coking of petroleum based pitch, and the manufactured coke was heat treated with different heat temperatures at 700~1,500 ℃ to prepare low temperature heated anode materials. The physical and chemical properties of carbon anode materials were studied through nitrogen adsorption and desorption, X-ray diffraction (XRD), Raman spectroscopy, elemental analysis. Also the anode properties of low temperature heated carbon were considered through electrochemical properties such as capacity, initial Coulomb efficiency (ICE), rate capability, and cycle performance. The crystal structure of low temperature (≤ 1500 ℃) heated carbon was improved by increasing the crystal size and true density, while the specific surface area decreased. Electrochemical properties of the anode material were changed with respect to the physical and chemical properties of low temperature heated carbon. The capacity and cycle performance were most affected by H/C atomic ratio. Also, the ICE was influenced by the specific surface area, whereas the rate performance was most affected by true density.

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).

Analysis of Plastic Deformation Behavior according to Crystal Orientation of Electrodeposited Cu Film Using Electron Backscatter Diffraction and Crystal Plasticity Finite Element Method (전자 후방 산란 분석기술과 결정소성 유한요소법을 이용한 전해 도금 구리 박막의 결정 방위에 따른 소성 변형 거동 해석)

  • Hyun Park;Han-Kyun Shin;Jung-Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.36-44
    • /
    • 2024
  • Copper electrodeposition technology is essential for producing copper films and interconnects in the microelectronics industries including semiconductor packaging, semiconductors and secondary battery, and there are extensive efforts to control the microstructure of these films and interconnects. In this study, we investigated the influence of crystallographic orientation on the local plastic deformation of copper films for secondary batteries deformed by uniaxial tensile load. Crystallographic orientation maps of two electrodeposited copper films with different textures were measured using an electron backscatter diffraction (EBSD) system and then used as initial conditions for crystal plasticity finite element analysis to predict the local plastic deformation behavior within the films during uniaxial tension deformation. Through these processes, the changes of the local plastic deformation behavior and texture of the films were traced according to the tensile strain, and the crystal orientations leading to the inhomogeneous plastic deformation were identified.

Building battery deterioration prediction model using real field data (머신러닝 기법을 이용한 납축전지 열화 예측 모델 개발)

  • Choi, Keunho;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.243-264
    • /
    • 2018
  • Although the worldwide battery market is recently spurring the development of lithium secondary battery, lead acid batteries (rechargeable batteries) which have good-performance and can be reused are consumed in a wide range of industry fields. However, lead-acid batteries have a serious problem in that deterioration of a battery makes progress quickly in the presence of that degradation of only one cell among several cells which is packed in a battery begins. To overcome this problem, previous researches have attempted to identify the mechanism of deterioration of a battery in many ways. However, most of previous researches have used data obtained in a laboratory to analyze the mechanism of deterioration of a battery but not used data obtained in a real world. The usage of real data can increase the feasibility and the applicability of the findings of a research. Therefore, this study aims to develop a model which predicts the battery deterioration using data obtained in real world. To this end, we collected data which presents change of battery state by attaching sensors enabling to monitor the battery condition in real time to dozens of golf carts operated in the real golf field. As a result, total 16,883 samples were obtained. And then, we developed a model which predicts a precursor phenomenon representing deterioration of a battery by analyzing the data collected from the sensors using machine learning techniques. As initial independent variables, we used 1) inbound time of a cart, 2) outbound time of a cart, 3) duration(from outbound time to charge time), 4) charge amount, 5) used amount, 6) charge efficiency, 7) lowest temperature of battery cell 1 to 6, 8) lowest voltage of battery cell 1 to 6, 9) highest voltage of battery cell 1 to 6, 10) voltage of battery cell 1 to 6 at the beginning of operation, 11) voltage of battery cell 1 to 6 at the end of charge, 12) used amount of battery cell 1 to 6 during operation, 13) used amount of battery during operation(Max-Min), 14) duration of battery use, and 15) highest current during operation. Since the values of the independent variables, lowest temperature of battery cell 1 to 6, lowest voltage of battery cell 1 to 6, highest voltage of battery cell 1 to 6, voltage of battery cell 1 to 6 at the beginning of operation, voltage of battery cell 1 to 6 at the end of charge, and used amount of battery cell 1 to 6 during operation are similar to that of each battery cell, we conducted principal component analysis using verimax orthogonal rotation in order to mitigate the multiple collinearity problem. According to the results, we made new variables by averaging the values of independent variables clustered together, and used them as final independent variables instead of origin variables, thereby reducing the dimension. We used decision tree, logistic regression, Bayesian network as algorithms for building prediction models. And also, we built prediction models using the bagging of each of them, the boosting of each of them, and RandomForest. Experimental results show that the prediction model using the bagging of decision tree yields the best accuracy of 89.3923%. This study has some limitations in that the additional variables which affect the deterioration of battery such as weather (temperature, humidity) and driving habits, did not considered, therefore, we would like to consider the them in the future research. However, the battery deterioration prediction model proposed in the present study is expected to enable effective and efficient management of battery used in the real filed by dramatically and to reduce the cost caused by not detecting battery deterioration accordingly.

Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures (리튬 이차전지 음극용 Cu3Si의 고온에서의 전기화학적 특성)

  • Kwon, Ji-Y.;Ryu, Ji-Heon;Kim, Jun-Ho;Chae, Oh-B.;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.116-122
    • /
    • 2010
  • A $Cu_3Si$ film electrode is obtained by Si deposition on a Cu foil using DC magnetron sputtering, which is followed by annealing at $800^{\circ}C$ for 10 h. The Si component in $Cu_3Si$ is inactive for lithiation at ambient temperature. The linear sweep thermammetry (LSTA) and galvano-static charge/discharge cycling, however, consistently illustrate that $Cu_3Si$ becomes active for the conversion-type lithiation reaction at elevated temperatures (> $85^{\circ}C$). The $Cu_3Si$ electrode that is short-circuited with Li metal for one week is converted to a mixture of $Li_{21}Si_5$ and metallic Cu, implying that the Li-Si alloy phase generated at 0.0 V (vs. Li/$Li^+$) at the quasi-equilibrium condition is the most Li-rich $Li_{21}Si_5$. However, the lithiation is not extended to this phase in the constant-current charging (transient or dynamic condition). Upon de-lithiation, the metallic Cu and Si react to be restored back to $Cu_3Si$. The $Cu_3Si$ electrode shows a better cycle performance than an amorphous Si electrode at $120^{\circ}C$, which can be ascribed to the favorable roles provided by the Cu component in $Cu_3Si$. The inactive element (Cu) plays as a buffer against the volume change of Si component, which can minimize the electrode failure by suppressing the detachment of Si from the Cu substrate.

A Study on the Recovery of Lithium from Secondary Resources of Ceramic Glass Containing Li-Al-Si by Ca-based Salt Roasting and Water Leaching Process (Li-Al-Si 함유 유리세라믹 순환자원으로부터 Ca계열 염배소법 및 이에 따른 수침출 공정에 의한 리튬의 회수 연구)

  • Sung-Ho Joo;Dong Ju Shin;Dongseok Lee;Shun Myung Shin
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.42-49
    • /
    • 2023
  • The glass ceramic secondary resource containing Li-Al-Si is used in inductor, fireproof glass, and transparent cookware and accounts for 14% of the total consumption of Li, which is the second most widely used after Li-ion batteries. Therefore, new Li resources should be explored when the demand for Li is exploding, and extensive research on Li recovery is needed. Herein, we recovered Li from fireproof Li-Al-Si glass ceramic, which is a new secondary resource containing Li. The fireproof glass among all Li-Al-Si glass ceramics was used as raw material that contained 1.5% Li, 9.4% Al, and 28.9% Si. The process for recovering Li from the fireproof glass was divided into two parts: (1) calcium salt roasting and (2) water leaching. In calcium salt roasting, a sample of fireproof glass was crushed and ground below 325 mesh. The leaching efficiency was compared based on the presence or absence of heat treatment of the fireproof glass. Moreover, the leaching rates based on the input ratios of calcium salt, Li-Al-Si glass, and ceramics and the leaching process based on calcium salt roasting temperatures were compared. In water leaching, the leaching and recovery rates of Li based on different temperatures, times, solid-liquid ratios, and number of continuous leaching stages were compared. The results revealed that fireproof glass ceramics containing Li-Al-Si should be heat treated to change phase to beta-type spodumene. CaCO3 salt should be added at a ratio of 6:1 with glass ceramics containing Li-Al-Si, and then leached 4 times or more to achieve a recovery efficiency of Li over 98% from a solution containing 200 mg/L of Li.

The development of conductive 10B thin film for neutron monitoring (중성자 모니터링을 위한 전도성 10B 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Jung, Yongju;Choi, Young-Hyun;Baek, Cheol-Ha;Moon, Myung-Kook
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.199-205
    • /
    • 2014
  • In the field of neutron detections, $^3He$ gas, the so-called "the gold standard," is the most widely used material for neutron detections because of its high efficiency in neutron capturing. However, from variable causes since early 2009, $^3He$ is being depleted, which has maintained an upward pressure on its cost. For this reason, the demands for $^3He$ replacements are rising sharply. Research into neutron converting materials, which has not been used well due to a neutron detection efficiency lower than the efficiency of $^3He$, although it can be chosen for use in a neutron detector, has been highlighted again. $^{10}B$, which is one of the $^3He$ replacements, such as $BF_3$, $^6Li$, $^{10}B$, $Gd_2O_2S$, is being researched by various detector development groups owing to a number of advantages such as easy gamma-ray discrimination, non-toxicity, low cost, etc. One of the possible techniques for the detection is an indirect neutron detection method measuring secondary radiation generated by interactions between neutrons and $^{10}B$. Because of the mean free path of alpha particle from interactions that are very short in a solid material, the thickness of $^{10}B$ should be thin. Therefore, to increase the neutron detection efficiency, it is important to make a $^{10}B$ thin film. In this study, we fabricated a $^{10}B$ thin film that is about 60 um in thickness for neutron detection using well-known technology for the manufacturing of a thin electrode for use in lithium ion batteries. In addition, by performing simple physical tests on the conductivity, dispersion, adhesion, and flexibility, we confirmed that the physical characteristics of the fabricated $^{10}B$ thin film are good. Using the fabricated $^{10}B$ thin film, we made a proportional counter for neutron monitoring and measured the neutron pulse height spectrum at a neutron facility at KAERI. Furthermore, we calculated using the Monte Carlo simulation the change of neutron detection efficiency according to the number of thin film layers. In conclusion, we suggest a fabrication method of a $^{10}B$ thin film using the technology used in making a thin electrode of lithium ion batteries and made the $^{10}B$ thin film for neutron detection using suggested method.

Study on Preparation of High Purity Lithium Hydroxide Powder with 2-step Precipitation Process Using Lithium Carbonate Recovered from Waste LIB Battery (폐리튬이차전지에서 회수한 탄산리튬으로부터 2-step 침전공정을 이용한 고순도 수산화리튬 분말 제조 연구)

  • Joo, Soyeong;Kang, Yubin;Shim, Hyun-Woo;Byun, Suk-Hyun;Kim, Yong Hwan;Lee, Chan-Gi;Kim, Dae-Guen
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • A valuable metal recovery from waste resources such as spent rechargeable secondary batteries is of critical issues because of a sharp increase in the amount of waste resources. In this context, it is necessary to research not only recycling waste lithium-ion batteries (LIBs), but also reusing valuable metals (e.g., Li, Co, Ni, Mn etc.) recovered from waste LIBs. In particular, the lithium hydroxide ($LiOH{\cdot}xH_2O$), which is of precursors that can be prepared by the recovery of Li in waste LIBs, can be reused as a catalyst, a carbon dioxide absorbent, and again as a precursor for cathode materials of LIB. However, most studies of recycling the waste LIBs have been focused on the preparation of lithium carbonate with a recovery of Li. Herein, we show the preparation of high purity lithium hydroxide powder along with the precipitation process, and the systematic study to find an optimum condition is also carried out. The lithium carbonate, which is recovered from waste LIBs, was used as starting materials for synthesis of lithium hydroxide. The optimum precipitation conditions for the preparation of LiOH were found as follows: based on stirring, reaction temperature $90^{\circ}C$, reaction time 3 hr, precursor ratio 1:1. To synthesize uniform and high purity lithium hydroxide, 2-step precipitation process was additionally performed, and consequently, high purity $LiOH{\cdot}xH_2O$ powder was obtained.

Macroporous Thick Tin Foil Negative Electrode via Chemical Etching for Lithium-ion Batteries (화학적 식각을 통해 제조한 리튬이온 이차전지용 고용량 다공성 주석후막 음극)

  • Kim, Hae Been;Lee, Pyung Woo;Lee, Dong Geun;Oh, Ji Seon;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.36-42
    • /
    • 2019
  • A macroporous Sn thick film as a high capacity negative electrode for a lithium ion secondary battery was prepared by using a chemical etching method using nitric acid for a Sn film having a thickness of $52{\mu}m$. The porous Sn thick film greatly reduced the over-voltage for the alloying reaction with lithium by the increased reaction area. At the same time. The porous structure of active Sn film plays a part in the buffer and reduces the damage by the volume change during cycles. Since the porous Sn thick film electrode does not require the use of the binder and the conductive carbon black, it has substantially larger energy density. As the concentration of nitric acid in etching solution increased, the degree of the etching increased. The etching of the Sn film effectively proceeded with nitric acid of 3 M concentration or more. The porous Sn film could not be recovered because the most of Sn was eluted within 60 seconds by the rapid etching rate in the 5 M nitric acid. In the case of etching with 4 M nitric acid for 60 seconds, the appropriate porous Sn film was formed with 48.9% of weight loss and 40.3% of thickness change during chemical acid etching process. As the degree of etching of Sn film increased, the electrochemical activity and the reversible capacity for the lithium storage of the Sn film electrode were increased. The highest reversible specific capacity of 650 mAh/g was achieved at the etching condition with 4 M nitric acid. The porous Sn film electrode showed better cycle performance than the conventional electrode using a Sn powder.