• 제목/요약/키워드: Secondary Refrigeration System

검색결과 58건 처리시간 0.017초

PID 제어를 이용한 멀티형 열펌프의 용량조절 (Capacity Modulation of a Multi-Type Heat Pump System Using PID Control)

  • 정대성;김민성;김민수;이원용
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.446-475
    • /
    • 2000
  • Performance of a water-to-water multi-type heat pump system using R22 has been experimentally investigated. Total refrigerant flow rate was adjusted with a variable speed compressor and the refrigerant flow rate for two indoor units were controlled by electronic expansion valves. Evaporator outlet pressure of refrigerant and indoor unit outlet temperatures of secondary fluid were selected as controlled variables. Experiments were carried out for both cooling and heating modes using PID control method. Results show that the multi-type heat pump system can be adequately controlled by keeping control gains at certain levels for various operating conditions.

  • PDF

충돌수분류계(衝突水噴流系)에서 와이어 메쉬를 사용(使用)한 열전달(熱傳達) 증진(增進)에 관(關)한 연구(硏究) (A Study on the Heat Transfer Augmentation by Using Wire-mesh Impinging Water Jet)

  • 나기대
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.291-301
    • /
    • 1994
  • This paper presents the promotion of heat transfer through the use of wire-mesh screens. To improve heat transfer in an impingement water system, the wire-mesh screens are installed between the nozzle-to-heater surfaces. When the wire-mesh screens are not employed, this report exhibits the maximum heat transfer and the secondary maximum value at the stagnation point. But in case of using the wire-mesh screens, the transfer coefficient value of maximum heat exists at the stagnation point, and the second maximum value doesn't occur. Therefore, the heat transfer is more improved than 4~6 times that of the mean Nusselt numbers of simple water jet system, Also, within the region presented in this study, the heat transfer was promoted by using the wire-mesh screens at the stagnation point ; thus, the heat transfer was more increased than 6-7. 5 times that of simple water jet system.

  • PDF

Enhancement of Turbulent Heat Transfer of the Cooling System in Nuclear Reactor by Large Scale Vortex Generation

  • Chun, Kun-Ho;Park, Jong-Seok;Choi, Young-Don
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권2호
    • /
    • pp.77-84
    • /
    • 2001
  • Experimental and computational studies were carried out to investigate the turbulent heat transfer enhancement of the cooling system in nuclear reactor by large scale vortex generation. The large scale vortex motion was generated by rearranging the inclination angels of mixing vanes to the coordinate direction. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity concept based on $\kappa{-}\varepsilon$ model was employed to calculate the turbulent heat and momentum transfers in the subchannel. The turbulences generated by split mixing vanes has small length scales so that they maintain only about $10D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex motions continue longer and remain up to $25D_H$ after the spacer grid.

  • PDF

원자로 연료봉내 대형 와유동에 의한 원자로 냉각제 시스템의 난류 증진 (Turbulent Enhancement of the Cooling System of Nuclear Reactor by Large Scale Vortex Generation in a Nuclear Fuel Bundles)

  • 전건호;박종석;최영돈
    • 설비공학논문집
    • /
    • 제12권11호
    • /
    • pp.1004-1011
    • /
    • 2000
  • Experimental and computational studies were carried out to confirm the turbulent enhancement of the cooling system of nuclear reactor by large scale vortex generation in nuclear fuel bundle. The large scale vortex motions were generated by rearranging the inclination angles of mixing vanes to the coordinate directions. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity heat flux model and $k-varepsilon$ model were employed to analyze the turbulent heat and fluid flows in the subchannel. The turbulence generated by split mixing vanes has small length scales so that they maintain only about $10 D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex continue more and remain up to $25 D_H$after the spacer gird.

  • PDF

사각(四角) 충돌수분류(衝突水噴流)의 열전달증진(熱傳達增進)에 관(關)한 연구(硏究) (A Study on Heat Transfer Augmentation in Rectangular Impinging Water Jet System)

  • 박성연;이종수;엄기호;서정민
    • 설비공학논문집
    • /
    • 제3권1호
    • /
    • pp.42-50
    • /
    • 1991
  • The purpose of this study is an augmentation of heat transfer in the case of upward rectangular impinging water jet system. The variables of this study are nozzle-to-heated surface distance, jet velocity and supplementary water height. Optimum heights of supplementary water which augment the heat transfer rate are S/B=2 for H/B=30 and S/B=I for H/B=40, 50. On the Y-direction of nozzle, there exhibits the secondary peak of heat transfer coefficient when supplementary water is not used, however using the supplementary water, it does not exhibits. In the case of using supplementary water, heat transfer coefficient increases not only in stagnation region but also in wall jet region.

  • PDF

태양열 시스템에 적용된 나선재킷형 축열조의 실증실험 (Experimental Verification for a Spiral-Jacketed Storage Tank Applied to Solar Thermal System)

  • 김진홍;최봉수;홍희기;김용식
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.341-346
    • /
    • 2005
  • The simplification of solar thermal systems reduces the possibility of operating trouble and lowers the cost of the initial investment and maintenance. This also leads to increased competitiveness in the energy market. We proposed a spiral-jacketed storage tank that functions both as a heat exchanger and expansion tank, which removes the secondary piping and markedly simplifies the entire system. The new storage tank was designed and manufactured to maintain the same performance as the conventional system and the exiting system was remodelled by adopting the newly proposed storage tank. This experiment was conducted under real conditions over a period of several months. The retrofitted system with the spiral-jacketed storage tank showed good performance that is on a similar level as the previous system having a typical storage tank and heat exchanger.

소형 왕복동 압축기의 동적 거동 및 윤활특성 해석 (Analysis of the Dynamic Behavior and Lubrication Characteristics of a Small Reciprocating Compressor)

  • 김태종
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1138-1145
    • /
    • 2003
  • In this paper, a study on the dynamic behavior and lubrication characteristics of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and oil films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and Gumbel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft. The results explored the effects of design parameters on the stability and lubrication characteristics of the compression mechanism.

Capacity Modulation of an Inverter Driven Heat Pump with Expansion Devices

  • Lee, Yong-Taek;Kim, Yong-Chan;Park, Youn-Cheol;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권2호
    • /
    • pp.60-68
    • /
    • 2000
  • An experimental study was peformed to investigate characteristics of an inverter driven heat pump system with a variation of compressor frequency and expansion device. The compressor frequency varied from 30Hz to 75Hz, and the performance of the system ap-plying three different expansion devices such as capillary tube, thermostatic expansion valve(TXV), and electronic expansion valve (EEV) was measured. The load conditions were altered by varying the temperatures of the secondary fluid entering condenser and evaporator with a constant flow rate. When the test condition was deviated from the standard value(rated value), TXV and EEV showed better performance than capillary tube due to optimal control of mass flow rate and superheat. In the present study, it was observed that the variable area expansion device had better performance than constant area expansion device in the inverter heat pump system due to active control of flow area with a change of com-pressor frequency and load conditions.

  • PDF

2단 가열식 지열시스템의 경제성 분석 (An Economic Analysis of a Secondary Waste Heat Recovery Geothermal Heating System)

  • 신정수;김선혜
    • 설비공학논문집
    • /
    • 제29권5호
    • /
    • pp.249-258
    • /
    • 2017
  • This paper provides an economic analysis of a new geothermal heat pump system that reuses condenser waste heat from a Ground Source Heat Pump ($GSHP_{ch}$) to provide energy for a hot water Ground Source heat pump ($GSHP_{hw}$). After conducting feasibility tests using GLD and TRNSYS simulations, the proposed system was effectively installed and thoroughly tested. We observe that 1) the Coefficient of Performance (COP) of the $GSHP_{hw}$ and the $GSHP_{ch}$ during cooling mode improves by up to 62% and 7%, respectively; 2) the number of bore holes can be reduced by two; and 3) the hot water supply temperature of the $GSHP_{hw}$ increases by up to $60^{\circ}C$. We further conclude that 1) the reduction of two bore holes can save approximately ten million Won from the initial cost investment; and 2) the increased COP of the $GSHP_{hw}$ can save approximately one million Won in annual electricity costs.

지열원 물대공기 멀티 히트펌프의 일일 난방 운전 특성에 관한 실증 연구 (Daily Heating Performance of a Ground Source Multi-heat Pump at Heating Mode)

  • 최종민;임효재;강신형;문제명;김록희
    • 설비공학논문집
    • /
    • 제21권9호
    • /
    • pp.527-535
    • /
    • 2009
  • The aim of this study is to investigate the daily heating performance of ground source multi-heat pump system with vertical single U-tube type GLHXs, which were installed in a school building located in Cheonan. Daily average COP of heat pump unit on Jan. 12th, 2009 at heating mode was lower than it on Nov. 10th, 2008 and Dec. 15th, 2008, because of lower EWT of the outdoor heat exchanger and relatively smaller size of condenser and evaporator. But, the system COP on the former was higher than it on the latter because ground loop circulating pump was operated in rated speed. It is suggested that the new algorithms to control the flow rate of secondary fluid for GLHX according to load change have to be developed in order to enhance the performance of the system COP.