• Title/Summary/Keyword: Secondary Flow and Loss

Search Result 116, Processing Time 0.023 seconds

Study on Performance Prediction of Industrial Axial Flow Fan with Adjustable Pitch Blades (산업용 조정 피치형 축류송풍기의 성능예측에 관한 연구)

  • Koo, Jae-In;Kim, Chang-Soo;Chung, Jin-Teak;Kim, Kwang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.30-34
    • /
    • 2001
  • In the present study, we studied the method of predicting the on-design and on-design point performance of axial flow fan with adjustable pitch blades. With the change of stagger angle of axial flow fan with adjustable pitch blade, flow rate and pressure can be changed. Because of this merit adjustable pitch fans are used in many industrial facility. When changing stagger angle or estimating the performance at a wide range of off-design condition, incidence angle changes greatly as the flow rate changes. Therefore, the deviation angle at the blade exit is estimated by the correlation considering the effects of blade design, incidence angle variation. In the loss model, we used known pressure loss model for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flow. The results of modified deviation angle model and experiment were compared for the usefulness of the modified model.

  • PDF

Numerical Analysis on Effects of Positioning and Height of the Contoured Endwall on the Three-Dimensional Flow in an Annular Turbine Nozzle Guide Vane Cascade (끝벽의 설치 위치 및 변형 높이에 따른 환형 터빈 노즐 안내깃 캐스케이드 내 3차원 유동에 미치는 영향에 관한 수치해석)

  • Lee, Wu-Sang;Kim, Dae-Hyun;Min, Jae-Hong;Chung, Jin-Taek
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3247-3252
    • /
    • 2007
  • Endwall losses contribute significantly to the overall losses in modern turbomachinery, especially when aerodynamic airfoil load and pressure ratio are increased. Hence, reducing the extend and intensity of the secondary flow structures helps to enhance overall efficiency. From the large range of viable approaches, a promising combination positioning and height of endwall contouring was chosen. The objective of this study is to document the three-dimensional flow in a turbine cascade in terms of streamwise vorticity, total pressure loss distribution and static pressure distribution on the endwall and blade surface and to propose an appropriate positioning and height of the endwall contouring which show best secondary, overall loss reduction among the simulated endwall. The flow through the gas turbine were numerically analyzed using three dimensional Navier-Stroke equations with a commercial CFD code ANSYS CFX-10. The result shows that the overall loss is reduced near the flat endwall rather than contoured endwall, and the case of contoured endwall installed at 30% from leading edge with height of 25% for span showed best performance.

  • PDF

Three-dimensional flow and pressure loss of a film-cooling jets injected in spanwise direction (폭방향으로 분사되는 막냉각 제트의 3차원 유동특성 및 압력손실)

  • Lee, Sang-U;Kim,Yong-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1363-1375
    • /
    • 1996
  • Oil-film flow visualizations and three-dimensional flow measurements using a five-hole probe have been conducted to investigate three-dimensional flow characteristics and total pressure losses of a row of film-cooling jets injected in spanwise direction. For several span-to-diameter ratios, experiments are performed in the case of three velocity ratios of 0.5, 1.0 and 1.5. The flow measurements show that downstream flow due to the injection is characterized by a single streamwise vortex instead of a pair of counter-rotating vortices, which appear in the case of streamwise injection, and the vortex strength strongly depends on the velocity ratio. Regardless of the velocity*y ratio, presence of the spanwise film-cooling jets always produces total pressure loss, which is pronounced when the velocity ratio is large. It has also been found that the production of the total pressure loss is closely related to the secondary vortical flow. In addition, effects of the span-to-diameter ratio on the flow and total pressure loss are discussed in detail.

Modeling of Deviation Angle and Pressure Loss Due to Rotor Tip Leakage Flow Effects in Axial Turbines (축류터빈에서 끝간격 유동에 의한 편향각과 압력손실의 모형)

  • Yoon, Eui Soo;Park, Moo Ryong;Chung, Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1591-1602
    • /
    • 1998
  • Simple spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a flow analysis. Combining these new models with the previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.

An Interal Flow Analysis of Turbo Pump Inducer (터보펌프 인듀서의 내부 유동 해석)

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.631-636
    • /
    • 2001
  • The internal flow in the rocket pump inducer of LE-7 engine for H-II rocket was predicted at design and off-design flow rates using CFD code, CFX- Tascflow. In this numerical study, the performance curve of inducer coressponding to flow rates variation and the internal flow in the front of blade leading edge show good agreement between the calculations and the measurements. Backflow is appeared at suction side of leadinge edge tip, and this region is extended to upstream as flowrate decrease. Because of backflow, pressure loss coressponding to meridinal coordinate occupy 50% from inlet domain to leading edge. By this phenomena, pressure loss in front of blade leading edge take a great effect to inducer performance.

  • PDF

Off-design Performance Prediction of Centrifugal Pumps by Using TEIS model and Two-zone model (TEIS 모델과 두 영역 모델을 이용한 원심 펌프의 탈 설계 성능 예측)

  • Yoon, In-Ho;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.574-579
    • /
    • 2000
  • In this study. an off-design performance prediction program for centrifugal pumps is developed. To estimate the losses in an impeller flow passage, two-zone model and two-element in series(TEIS) model are used. At impeller exit. the mixing process occurs with an increase in entropy. In two-zone model. there are both primary zone and secondary zone for an isentropic core flow and an average of all non-isentropic streamtubes respectively. The level of the core flow diffusion in an impeller was calculated by using TEIS model. While internal losses in an impeller an automatically estimated by using the above models, some empirical correlations far estimating external losses. far example, disk friction loss, recirculation loss and leakage loss are used. In order to analyze the vaneless diffuser flow. the momentum equations for the radial and tangential directions are used and solved together with continuity and energy equations.

  • PDF

Modeling of Deviation Angle and Pressure Loss due to Rotor Tip Leakage Flow in Axial Turbines (축류터빈의 동익에서 끝간격 누설유동에 의한 편향각과 압력손실의 모형화)

  • 윤의수;오군섭;정명균
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.13-13
    • /
    • 1998
  • A simple model of the tip leakage flow models of the rotor downstream flow is developed, based on Lakshminarayana's theoretical concept on the tip clearance flow and the experimental data published in open literature. And new spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a through flow analysis. Combining these new models and previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.

  • PDF

Numerical simulation of tip clearance flows through linear turbine cascades (선형터빈 익렬의 익단간극유동에 대한 수치해석적 연구)

  • Lee, Hun-Gu;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.813-821
    • /
    • 1997
  • Three-dimensional turbulent incompressible flow through the tip clearance of a linear turbine rotor cascade with high turning angle has been analyzed numerically. As a preliminary study to predict the tip clearance loss realistically, a generalized k-.epsilon. model derived by RNG (renormalized group) method is used for the modeling of Reynolds stresses to account for the strain rate of turbulent flow. The effects of the tip clearance flow on the passage vortex, the total pressure loss are considered qualitatively. The existences of vena contract and tip clearance vortex have been confirmed and it has been shown that as the size of the tip clearance increases, the accumulated flow through the tip clearance and the total pressure loss downstream of the cascade increase.

Three-dimensional flow within a film-cooling hole normally oriented to the main flow (수직분사 막냉각구멍 내부에서의 3차원 유동특성)

  • Lee, Sang-U;Ju, Seong-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1185-1197
    • /
    • 1997
  • Three-dimensional flow within a film-cooling hole, which is normally oriented to the main flow, has been measured by using a straight five-hole probe for the blowing ratios of 1.0 and 2.0. The length-to-diameter ratio of the injection hole is fixed to be 1.0 throughout the whole experiments. The result shows that the secondary flow within the hole is strongly affected by the main flow and flow separation at the hole inlet. The higher blowing ratio provides less influence of the main flow on the injectant flow. The three-dimensional flow at the hole exit is considerably altered due to the strong interaction between the injectant and main flow. The aerodynamic loss produced inside the injection hole is mainly attributed to the inlet flow separation.

Numerical Evaluation of Flow and Performance of Turbo-Pump Inducers (터보펌프 인듀서의 유동 및 성능의 수치적 평가)

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.22-28
    • /
    • 2002
  • Steady state flow calculations are conducted for the newly-designed turbo-pump inducers to validate the performance of Tascflow code. Hydrodynamic performance is evaluated, and structures of the passage flow and leading edge recirculation are also investigated. The calculated results show good coincidence with the experimental data of the static pressure performance and velocity profiles near the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main sources of pressure losses. Amount of pressure losses from the upstream to the leading edge corresponds to that of pressure losses through the whole blade. The total viscous losses are considerably large due to the strong secondary flow.