• Title/Summary/Keyword: Secondary Flow

Search Result 1,209, Processing Time 0.032 seconds

Study of the Secondary Flow Effect on the Turbulent Flow Characteristics in Fuel Rod Bundles (핵연료봉 주위의 난류 유동장 특성에 미치는 이차 유동의 영향에 대한 연구)

  • Lee, Kye-Bock;Jang, Ho-Cheol;Lee, Sang-Keun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.345-354
    • /
    • 1994
  • Numerical Predictions including secondary flows have been Performed for fully developed turbulent single-phase rod bundle flows. The k-$\varepsilon$ turbulence model(two equation model) for the isotropic eddy viscosity, together with an algebraic stress model for generating secondary velocities, enabled the prediction of mean axial velocities, secondary velocities, and turbulent kinetic energy and turbulent stresses. Comparisons with experiment hate shown that the influence of secondary motion on mean flow and turbulence is dearly evident. The convective transport effects of secondary flow on the velocity field have been identified.

  • PDF

Inverse design of Aircraft Engine Turbine Blades. (항공기 가스터빈 엔진의 터빈 날개의 역설계)

  • Kang Young-Seok;Kang Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.603-606
    • /
    • 2002
  • Numerical analysis and its inverse design process of 2nd stage of JT8D aircraft engine is described. One of the most important factors that affect the performante of turbomachine is secondary flow in the blade passage, so that the performance of turbomachine can be improved by controlling secondary flow. In this paper, as a method to control secondary flow, commercial inverse design program, TurboDesign is used. Meridional derivative of angular momentum is selected as a parameter to control blade leading in this program, To validate inverse designed model, computational analysis is applied which includes rotor-stator-interaction. In this paper, CFB results of both original and inverse designed model are compared to examine how much the performance improves without reduction of work output.

  • PDF

Humidity Effect on the Hydrogen Re-circulation Ejector Performance (고습의 흡입 유체일 때 이젝터의 성능 변화)

  • JeGal, Seung;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2589-2593
    • /
    • 2008
  • In a fuel cell vehicle using polymer electrolyte membrane fuel cell(PEMFC), hydrogen is over-supplied to gain higher stack efficiency. So it is needed considering fuel efficiency to re-circulate hydrogen which is not reacted in stack. And to re-circulate hydrogen, a blower or an ejector is used. Ejector re-circulation system has several merits compared with blower system, for example no parasite energy, simple structure and no lubrication system. But the secondary flow of an ejector in fuel cell vehicle, has high humidity because of crossover problem in stack. Therefore in this paper, ejector is designed by 1-D modeling and CFD with the primary and secondary flow of hydrogen. And the ejector which has the primary and secondary flow of air, is designed to have the same Reynolds number and Mach number at the nozzle exit as the hydrogen ejector's. And this air ejector is tested while the humidity of the secondary flow is varied.

  • PDF

Effect of Well Curvature on Curved Duct Flows

  • Hong Seung-Gyu;Heo Gi-Hun;Lee Gwang-Seop
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.131-135
    • /
    • 1997
  • Effect of wall curvature on flow characteristics is studied for mildly and strongly curved duct flows. The ducts are S-shaped, and the flow is partially blocked at the rear of the downstream. The presence of blockage in combination with curvature generates secondary flows on the concave surface; the magnitude of the secondary flow being dependent on the degree of wall curvature. Objectives are to compare the flow structures for mild and strong cases and to illuminate the changes in flow structure as the flow turns. Sensitivity on numerical solutions due to different inflow boundary conditions is also examined.

  • PDF

Evaluation of Nonlinear Models on Predicting Turbulence-Driven Secondary Flow (난류에 의해 야기되는 이차유동 예측에 관한 비선형 난류모형의 평가)

  • Myong, Hyon-Kook
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1814-1820
    • /
    • 2003
  • Nonlinear relationship between Reynolds stresses and the rate of strain of nonlinear ${\kappa}-{\epsilon}$ models is evaluated theoretically by using the boundary layer assumptions against the turbulence-driven secondary flows in noncircular ducts and then their prediction performance is validated numerically through the application to the fully developed turbulent flow in a square duct. Typical predicted quantities such as mean axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared with available experimental data. The nonlinear model adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

  • PDF

Flow Structure and Turbulence Characteristics in Meandering Channel (사행수로의 흐름구조 및 난류특성)

  • Seo, Il Won;Lee, Kyu Whan;Baek, Kyong Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.469-479
    • /
    • 2006
  • In order to investigate characteristics of the primary flow and the secondary currents in meandering channels, the laboratory experiments were conducted in S-curved channels with angle of bend, $150^{\circ}$, and sinuosity of 1.52. The experimental conditions was decided varying average depth and velocity. Under these experimental conditions, spatial variations of the secondary currents in multiple bends were observed. The experimental results revealed that the distribution of primary flow in straight section is symmetric without respect to the experimental condition and the maximum velocity line of the primary flow occurs along the shortest path in experimental channel, supporting the result of previous works. The secondary currents in second bend became more developed than those in first bend. Particularly, the outer bank cell developed distinctively and the secondary current intensity was low at the straight section and high at the bends, periodically. Also, the secondary current intensity at the bends was as twice to three times as that at the straight section, and has its maximum value at the second bend. The turbulent flow characteristics of meandering channel was investigated with turbulent intensity of the primary flow and Reynolds shear stress. It was observed that the turbulent intensity is increasing when the velocity deviation of the primary flow is large whereas Reynolds shear stress increases when both the velocity deviation of the primary flow and the secondary current are large.

Flow Analysis in a Entrained Flow Combustor (분류층 연소기내의 유동해석)

  • 양희천;김중현
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.30-36
    • /
    • 2000
  • A numerical study was conducted to investigate the effects of flow parameters in a entrained flow combustor on the flow characteristics. The computational model was based on the gas phase Eulerian equations of mass, momentum and energy. The code was formulated with RNG k-$\varepsilon$ model for turbulent flow. The calculation parameters were the magnitude of primary and secondary jet velocity and the height difference between primary and secondary jet. As the secondary jet velocity increased, the upper recirculation zone of the primary jet was strengthened. It was found that as the primary jet velocity increased, there was a critical jet velocity at which the size of upper and lower recirculation zone was changed.

  • PDF

A Computational Study of the Fluidic Thrust Vector Control Using Secondary Flow Injection (2차 유동 분사를 이용한 추력벡터 제어에 관한 수치해석적 연구)

  • Lim, Chae-Min;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.496-501
    • /
    • 2003
  • Computational study is performed to understand the fluidic thrust vectoring control of an axisymmetric nozzle, in which secondary gas injection is made in the divergent section of the nozzle. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain the different flow features in the nozzle flow. The injection flow rate is varied by means of the injection port pressure. Test conditions are in the range of the nozzle pressure ratio from 3.0 to 8.26 and the injection pressure ratio from 0 to 1.0. The present computational results show that, for a given nozzle pressure ratio, an increase of the injection pressure ratio produces increased thrust vector angle, but decreases the thrust efficiency.

  • PDF

Tip Clearance Effect on Through-Flow and Performance of a Centrifugal Compressor

  • Eum, Hark-Jin;Kang, Young-Seok;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.979-989
    • /
    • 2004
  • Numerical simulations have been performed to investigate tip clearance effect on through-flow and performance of a centrifugal compressor which has the same configuration of impeller with six different tip clearances. Secondary flow and loss distribution have been surveyed to understand the flow mechanism due to the tip clearance. Tip leakage flow strongly interacts with mainstream flow and considerably changes the secondary flow and the loss distribution inside the impeller passage. A method has been described to quantitatively estimate the tip clearance effect on the performance drop and the efficiency drop. The tip clearance has caused specific work reduction and additional entropy generation. The former, which is called inviscid loss, is independent of any internal loss and the latter, which is called viscous loss, is dependent on every loss in the flow passage. Two components equally affected the performance drop as the tip clearances were small, while the efficiency drop was influenced by the viscous component alone. The additional entropy generation was modeled with all the kinetic energy of the tip leakage flow. Therefore, the present paper can provide how to quantitatively estimate the tip clearance effect on the performance and efficiency.

Characteristics of Developing Turbulent Oscillatory Flows in a 180° Curved Duct with a Square Sectional by using a LDV (LDV에 의한 정사각 단면 180° 곡덕트에서 난류진동유동의 유동특성)

  • Yun, Seok-Ju;Lee, Haeng-Nam;Sohn, Hyun-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.344-353
    • /
    • 2015
  • In the present study the characteristics of turbulent oscillatory flows in a square-sectional $180^{\circ}$curved duct were investigated experimentally. A series of experiments for air flow were conducted to measure axial velocity profiles, secondary flow velocity profiles and pressure distributions. The measurements were made by a Laser Doppler Velocimeter (LDV) system with a data acquisition and processing system which includes Rotating Machinery Resolve (RMR) and PHASE software. The results from the experiment are summarized as follows. (1) The maximum velocity moved toward the outer wall from the region of a bend angle of $30^{\circ}$. The velocity distribution had a positive value extended over the total phase in the region of a bend angle of $150^{\circ}$. (2) Secondary flows were generally proportional to the velocity of the main flow. The intensity of the secondary flow was about 25% as much as that in the axial direction. (3) Pressure distributions were effects of the oscillatory Dean number and respective region.