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Abstract
Effect of wall curvature on flow characteristics is studied for mildly and strongly curved duct flows.
The ducts are S-shaped, and the flow is partially blocked at the rear of the downstream. The presence of
blockage in combination with curvature generates secondary flows on the concave surface; the magnitude of
the secondary flow being dependent on the degree of wall curvature. Objectives are to compare the flow
structures for mild and strong cases and to illuminate the changes in flow structure as the flow turns.
Sensitivity on numerical solutions due to different inflow boundary conditions is also examined.

1. INTRODUCTION

Tunnels, pipes, inlets and ducts, either curved or straight, are common encounters in our everyday
lives. Their role is in general to change the direction of the flow or re-direct it. The inlets, in particular,
when attached to the airplane feed the upstream flow to the engine blades in a desired manner. When the
speed of the vehicle approaches transonic, the presence of hub absorbs the direct impact of the external
flow on the engine blades by first partially blocking the oncoming flow and then supplies stable and even
flow onto the engine face.

In the present study, two arbitrarily curved ducts are constructed with different wall curvatures.
Primary aim is to investigate the effect of mild and strong curvatures on the flow structures inside the
duct flows. Inlet performances are judged by the degree of flow distortion at the engine face and by the
loss of total pressure drop. By also making the duct S-shaped, the effect of curvature is neutralized after
the curvature changes from convex to concave, or vise versa. In the computation, multiple grids are utilized
to avoid the singular line and to accomodate the hub area in a smooth manner which causes least amount
of grid skewness. Solutions are then obtained for mildly and strongly curved duct flows.

2. PROBLEM DESCRIPTION

Two ducts are subject to a uniform flow at a sea level condition. The ducts are mildly and
strongly curved with the L/D=5.0 and 2.5, respectively, where L is the length of the duct and D, the
diameter of it. Dependence of separation zones on the curvature is of interest. In order to see the
sensitivity of the inflow conditions, both fixed inflow condition and a characteristic inflow condition
based on constant total enthalpy condition are employed and their results are compared.

3. NUMERICAL METHOD

The basic numerical algorithm follows Roe-averaged flux-difference splitting (RFDS) method!?,
although many ideas are originated from flux-vector splitting formulations of Warming and Beams,
Pulliam and Steger®, Pulliam and Chaussee’, from conservative supra—characteristics method (CSCM) of

1.6'9, characteristic flux-difference splitting (CFDS) method of Yang et al.lo'”, among many
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others.

The governing  Navier-Stokes equations employed in the generalized coordinate system,

(& 5, ¢)are expressed for the conservative variable vector as

I8 4 a B (P B+ 7L (C+ C)+ Bg (B B =0 M

where F s C, and B are inviscid flux vectors, and F . @u, Hc are viscous flux vectors. Also,
}, =& -] = &./J. etc. As before, the inviscid fluxes, are linearized for upwind discretizations by
aF=Anq=(A "+ A7) ngq

and A= MTA* T 'M! @
yielding

T '8+ A'veq+ A 2eq+ B'v,g+ B a,q
3
+ C'vyg+ T ayq + (viscous terms) = 0

The matrix B' is the same as A™* except that £ in At s replaced by 7, and the matrix c*

takes ¢ instead of & in A*. Also the viscous flux vectors associated with &, 7 and ¢ directions,
respectively, can be related to the conservative vector ¢ via

F,=A,0,00,= B,2r,qg B, = C,0,49 . 4)
For simplicity and practical purpose, é&-direction viscous flux is neglected, and viscous coefficient
matrices B, and C, are retained in the current formulation. Upwind flux-difference splitting for the

inviscid fluxes and second-order central differencing for the viscous fluxes are then applied for
discretizations. Presently, solutions are updated from q" to g™ via implicit approximation in ( & 7, ¢)

-plane and symmetric Gauss-Seidel relaxation for £-direction.

Choice of proper boundary conditions is crucial for not only fast convergence but also accuracy of
solutions. Application of characteristic boundary procedure is based upon a realization that there are five
characteristics associated with the convective part of the Navier-Stokes equations. For subsonic inflow .
boundary, we have either fixed the flows or utilized a characteristic condition that the total enthalpy is

constant, ie. dH /8t = 0, through a modification in the 4% row of 7 'by

——;F,u,v,w,r],

to replace the 8P" — equation at the left.

For subsonic outflow boundary, one usually incorporates a condition that the pressure is constant, i.e.
dp/at = 0, through a modification in the 5" row of 7™ 'by

[0. 0.0, o,#

to replace the 0P  — equation at the right by
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8¢ = T Y6 = 6P/ yP = 0. (5)

At the wall, no-slip condition for velocity and adiabatic condition for temperature are imposed in the
direction normal to the wall. In the symmetry plane, values are extrapolated from neighboring planes.

4. RESULTS AND DISCUSSIONS

The two ducts are termed mildly and strongly curved ducts, and the duct domain is divided into three
blocks as shown in Fig. 1 for the symmetric half. The grid topology is devised differently for each of the
three domains: the rectangular core region denoted as Grid 1 is represented by a rectangular grid and
the Grid 2 is a wrap-around grid, and the Grid 3 surrounds the hub. This particular grid set eliminates
singularity in the core region and enhances the convergence of solution. The grids with different
topologies are overlapped by a grid cell where the two joining grids exchange data at the matching
points. The grid consists of (,k,)=(11,120,21) for grid 1, (92,27,37) for grid 2, and (30,56,37) for grid 3,
totaling 181,788 points.

Computational results obtained on Cray-YMP are presented in the form of Mach contours in the
symmetry plane, total pressure contours in the exit plane and velocity vectors in front of hub region.
First, Mach contours are shown in Fig. 2 for mildly curved case with fixed inflow at Mach=0.7, in Fig.
3 for the same case with characteristic boundary condition where total enthalpy is assumed given from
free-stream value, and in Fig. 4 for strongly curved duct flow with fixed boundary. The two figures,
Figs. 2 and 3, are almost identical and computed massflux ratio between the outflow and the inflow
yields 99.94% for the fixed case and 99.93% for the constant enthalpy case. At other cases when one
incorporates fixed inflow boundary, solutions sometimes jump from the first station to the second
station when solutions are updated. This is not the case for Fig. 2, showing smooth development of
solutions. Strongly curved flow is thus computed with fixed inflow and Mach contours are given in
Fig. 4. Comparison of Figs. 2 and 4 shows the curvature effect on the two flow fields. The flow with
strong curvature is accompanied by a larger separation zone where the secondary flow is quite strong.

The amount of flow distortion due to wall curvature can be measured by total pressure at the
exit plane. Figure 5 contains total pressure contours for (a) mild and (b) strong flows; the latter case
exhibits clearly a severe distortion, which has larger energy loss, due to stronger curvature. The ratio
of averaged total pressure between the exit plane and the inflow plane is 0938 for the mild flow and
0.910 for the strong flow. These numbers are measure of flow recovery after a flow passed through a
duct and a indication of how good a duct is designed.

Finally, velocity vectors are compared for the two flow cases in the flow separation zone. A larger
flow reversal is observed in the strongly curved case where flow stagnates longer in the upper concave
zone, which leads a lower recovery rate for the stronger case than the mild case.

5. CONCLUDING REMARKS

Objectives of present work were to test two different inflow cases for subsonic flow, on the one
hand, and to illustrate influence of wall curvature on flow structure in duct flows, on the other.
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Emphasis has also been placed on utilizing a multiple grid set which eliminates the grid singularity
along the core of the duct flow. The current results show amount of curvature effects on Mach
contours, total pressures and flow recovery for the two curved duct flows. Present work is thus shown
to provide a computational procedure for designing and analyzing internal duct flows with a modest
obstacle.

ACKNOWLEDGEMENTS

Authors express their thanks to computer support group at ADD for allowing us a convenient
access to Cray-YMP.

REFERENCES

1. Roe, P. L., "The use of Riemann problem in finite difference schemes,” Lecture Notes in Physics,
Vol. 141, 1981, pp. 354-359, Berlin, Springer Verlag.

2. Roe, P. L, "Approximate Riemann solvers, parameter vectors and difference scheme,” ]. of
Computational Physics, 43, 1981, pp. 357-372.

3. Warming, RF. and Beam, R. M.,"On the Construction of Implicit Factored Schemes for
Conservation Laws,” Computational Fluid Dynamics, SIAM-AMS Proceedings, Vol. 11, 1978, pp.85-127.

4. Pulliam, T. H. and Steger, J. L. “On Implicit Finite Difference Simulations of Three-Dimensional
Flows,” AIAA-78-10, January 1978.

5. Pulliam, T. H. and Chaussee, D. S., "A Diagonal Form of an Implicit Approximate-Factorization
Algorithm,”, Joumal of Computational Physics, Vol. 39, pp.347-363, 1981.

6. Lombard, C. K, Oliger, J, Yang, J. Y. and Davy, W. C, "Conservative Supra-Characteristics
Method for Splitting the Hyperbolic Systems of Gasdynamics with Computed Boundaries for Real and
Perfect Gases,” AIAA-82-0837, June 1982.

7. Lombard, C. K., Oliger, J., Yang, J. Y. "A Natural Conservative Flux Difference Splitting for the
Hyperbolic Systems of Gasdynamics,” AIAA-82-0976, June 1982.

8. Lombard, C. K,, et al, “Multi-Dimensional Formulation of CSCM - An Upwind Flux Difference
Eigenvector Split Method for the Compressible Navier-Stokes Equations”, AIAA-83-1895 AIAA 6th
CFD Conference, July 1983.

9. Hong, S. K, Bardina, J., Lombard, C. K., Wang, D. and Codding, W., "A Matrix of 3-D Turbulent
CFD Solutions for JI Control with Interacting Lateral and Attitude Thrusters,”AIAA 91-2099,
Sacramento, June 1991.

10. Yang, J. Y., "A Characteristic Flux Difference Splitting Method for Hyperbolic Systems: of
Conservation Laws,” Ph.D. Thesis, Stanford University, June 1982.

11. Yang. J. Y. and Lombard, C. K., "A Characteristic Flux Difference Splitting for the Hyperbolic
Conservation Laws of Inviscid Gasdynamics,” AIAA-83-0040, Reno, Jan 1983.

~134 -



Grid 2
(92*27*37,

04350
Grid 1 0385
(11*120*21) Grid 3 032t

(30*56*37)

1
Grid System lL
.

Lovel Mach
F
B
D
<
B
A
9
3
7
[ 1
5
4
3
2

1

: . Fig 4. Mach Contours for Strongly Curved Duct
Fig 1. Grid Topology for Duct Flow (fixed inflow B.C.)
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Fig 2. Mach Contours for Mildly Curved Duct Fig 5. Total Pressure Contours in Exit Planes
(fixed inflow B.C.) for a) Mild and b) Strong Cases
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Fig 3. Mach Contours for Mildly Curved Duct Fig 6. Velocity Vectors in Separation Zones
(characteristic inflow B.C.) for a) Mild and b) Strong Cases
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