• Title/Summary/Keyword: Secondary DOF

Search Result 9, Processing Time 0.027 seconds

Advanced Secondary Wastewater Treatment Using the DOF (Dissolved Ozone Flotation) System (DOF(Dissolved Ozone Flotation) 시스템을 이용한 하수처리장 방류수의 고도처리에 대한 연구)

  • Lee, Byoung Ho;Kim, Sang Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.767-774
    • /
    • 2005
  • The DOF (Dissolved Ozone Flotation) system was used to treat the effluent of the secondary wastewater treatment plant. The DOF system uses ozone instead of air, while DAF (Dissolved Air Flotation) uses air. Moreover, since the solubility of ozone is higher than air, the DOF system produces larger volume of micro-bubbles than the DAF system does. Thus, the DOF system performs better than the DAF system in floating ability. The DOF system could remove 70% of turbidity to an average of 0.59NTU in effluent from 2.31NTU in influent. The removal efficiency of absorbance measured with UV-254 in the effluent of the DOF system was 63%, while only 19% was removed by the DAF system. the DOF system removed 84% of the color from 25~26CU to 4CU, while DAF system removed 42% of the color to 15 CU. The CODMn removal efficiency of the DOF system was 34%, 6.8mg/l of effluent $COD_{Mn}$ concentratin, while it was 20%, 8.3mg/L of effluent $COD_{Mn}$ concentratin, to use the DAF system. Microbial bacteria such as coliform bacteria, and heterotrophic bacteria were removed over 99% by the DOF system, and 42~45% by the DAF system. That is, Microbial bacteria were almost completely destroyed by the DOF system. To sum up with, the DOF system was found to be very effective to treat effluent of the wastewater treatment plant.

Disinfection and Removal of SS and T-P Using DOF (Dissolved Ozone Flotation) (DOF(Dissolved Ozone Flotation)를 이용한 부유물질과 총인의 제거와 소득의 동시효과에 관한 연구)

  • Lee., Byoung-Ho;Kim, Sung-Hyuk;Lee, Sang-Bae;Kim, Mi-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2004
  • Effluent of wastewater treatment plant is to be disinfected to protect drinking water sources. DOF (Dissolved Ozone Flotation) was developed to meet this purpose. DOF was developed by combining DAF system with ozone. DAF system has good floating power with numerous microbubbles, and ozone has strong oxidation capability. And DOF system has good floating power and strong oxidation capability simultaneously. When DOF was applied to secondary wastewater effluent, color of 11CU in raw water which was secondary effluent was reduced to 1CU by the DOF system. Removal rate of other water quality parameters treated by DOF were also higher than that by DAF, which were proved the strength of oxidation capability of ozone. When ozone concentration of 3.3mg/l were applied in DOF system, general aerobic bacteria were reduced to 5CFU/ml from TNTC (Too many Numbers To Count). With the same ozone concentration, total coliform were not detected at all. These figures are under the numbers of drinking water regulation. These microbes were the target parameters of DOF. It was proved that DOF was very effective in disinfection of wastewater treatment plant effluent as well as in removal of color, turbidity, and T-P.

Low Frequency Vibration Energy Harvester Using Stopper-Engaged Dynamic Magnifier for Increased Power and Wide Bandwidth

  • Halim, Miah Abdul;Kim, Dae Heum;Park, Jae Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.707-714
    • /
    • 2016
  • We present a piezoelectric energy harvester with stopper-engaged dynamic magnifier which is capable of significantly increasing the operating bandwidth and the energy (power) harvested from a broad range of low frequency vibrations (<30 Hz). It uses a mass-loaded polymer beam (primary spring-mass system) that works as a dynamic magnifier for another mass-loaded piezoelectric beam (secondary spring-mass system) clamped on primary mass, constituting a two-degree-of-freedom (2-DOF) system. Use of polymer (polycarbonate) as the primary beam allows the harvester not only to respond to low frequency vibrations but also generates high impulsive force while the primary mass engages the base stopper. Upon excitation, the dynamic magnifier causes mechanical impact on the base stopper and transfers a secondary shock (in the form of impulsive force) to the energy harvesting element resulting in an increased strain in it and triggers nonlinear frequency up-conversion mechanism. Therefore, it generates almost four times larger average power and exhibits over 250% wider half-power bandwidth than those of its conventional 2-DOF counterpart (without stopper). Experimental results indicate that the proposed device is highly applicable to vibration energy harvesting in automobiles.

A Simplified Dvnamic Model for a Tilting Train Simulator (틸팅 차량 모의장치개발을 위한 단순화된 철도차량 모델링)

  • Kim, Jung-Seok;Song, Young-Soo;Han, Seong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.751-755
    • /
    • 2004
  • This paper presents a simplified dynamics of railway vehicle for a tilting train simulator. The tilting train simulator has 6 electric-driven actuators and a visualization system with 1600mm-diameter dome screen. The each system shares the data by ethernet. In order to analyze the dynamics of railway vehicle and transfer the results of the analysis to the other system of the tilting train simulator in realtime base, We assumed the tilting train as a simplified rigid body model with primary and secondary suspensions. The simplified vehicle model has a 17-DOF. Through the running analysis on the tight curve with various radius, we verified the simplified vehicle model.

  • PDF

Optimized Location Selection of Active Mounting System Applied to 1D Beam Structure

  • Kim, Byeongil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_1
    • /
    • pp.505-511
    • /
    • 2022
  • The objective of this article is finding optimized locations of active mounts applied to 6-DOF beam structure with two active paths. When sinusoidal excitation forces are applied to the beam structure, secondary forces from two active mounts which can minimize (ideally becoming zero) transmitted forces are calculated mathematically and the vibration attenuation performance is validated through computer simulations. When the force applied to two active mounts are relatively low, those specific locations are considered as optimized location of active mounting system. As the location of mount changes, amplitude and phase of secondary forces in each path are analyzed with 3D plots. Based on the simulation results, a criterion for selecting mounting location is suggested and it would be very useful for selecting actuators for active mounts appropriately.

Reduction Method based on Sub-domain Structure using Reduced Pseudo Inverse Method (축소 의사역행렬을 이용한 영역분할 기반 축소모델 구축기법 연구)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.173-179
    • /
    • 2009
  • Reduction scheme is remarkably useful in the case requiring the repeated calculation procedure. Recently, the efficiency of the reduction scheme has been improved by combining scheme of sub-domain method. But, when the global domain is partitioned into a few sub-domains, sub-domains without constraints can be produced. it is needed to extract the ritz vector from each sub-domain to construct the reduced system of each sub-domain. it is easy to extract the ritz vector from sub-domain with constraint. on the other hand, pseudo inverse method should be employed to extract the ritz vector from sub-domain without constraint. generally, the pseudo inverse takes a large number of computing time to obtain a reduced system of a sub-domain without boundary condition. This trouble can be overcome by the reduced pseudo inverse scheme which proposed in this study. This scheme is based on the static condensation that is not related with selection of the primary degrees of freedom. Numerical examples demonstrate that present method saves computational cost effectively. In addition, it is shown that the reduced system based on the proposed scheme predicts the accurate eigenvalues of global system.

Unguided Rocket Trajectory Analysis under Rotor Wake and External Wind (로터 후류와 외풍에 따른 무유도 로켓 궤적 변화 해석)

  • Kim, Hyeongseok;Chae, Sanghyun;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • Downwash from helicopter rotor blades and external winds from various maneuvering make an unguided rocket change its trajectory and range. For the prediction of the trajectory and range, it is essential to consider the downwash effect. In this study, an algorithm was developed to calculate 6-Degree-Of-Freedom(6 DOF) forces and moments exerting on the rocket, and total flight trajectory of a 2.75-inch unguided rocket in a helicopter downwash flow field. Using Actuator Disk Model(ADM) analysis result, the algorithm could analyze the entire trajectory in various initial launch condition such as launch angle, launch velocity, and external wind. The algorithm that considered the interference between a fuselage and external winds could predict the trajectory change more precisely than inflow model analysis. Using the developed algorithm, the attitude and trajectory change mechanism by the downwash effect were investigated analyzing the effective angle of attack change and characteristics of pitching stability of the unguided rocket. Also, the trajectory and range changes were analyzed by considering the downwash effect with external winds. As a result, it was concluded that the key factors of the rocket range change were downwash area and magnitude which effect on the rocket, and the secondary factors were the dynamic pressure of the rocket and the interference between a fuselage and external winds. In tailwind case which was much influential on the range characteristics than other wind cases, the range of the rocket rose as increasing the tailwind velocity. However, there was a limit that the range of the rocket did not increase more than the specific tailwind velocity.

Semi-active and Active Vibration Control to Improve Ride Comfort in Railway Vehicle (철도차량 승차감 향상을 위한 반능동/능동 진동제어)

  • You, Wonhee;Shin, Yujeong;Hur, Hyunmoo;Park, Junhyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.248-253
    • /
    • 2013
  • The maximum speed is one of the most important performance in high speed railway vehicle. The higher the train speed is, the worse the ride comfort is, In order to solve this problem, a semi-active or active suspension can be applied to high speed railway vehicle. The variable damper with hydraulic solenoid valve is used in the semi-active suspension. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. The MR(Magneto Rheological) damper can be considered instead of hydraulic variable damper which needs additional device, i.e. reserver tank for fluid. In the case of active suspension, hydraulic actuator or electro-mechanical one is used to suppress the carbody vibration in railway vehicle. In this study the MR damper and electro-mechanical actuator was considered in secondary suspension system of high speed railway vehicle. The dynamic analysis was performed by using 10-DOF dynamic equations of railway vehicle. The performance of the semi-active suspension and active suspension system were reviewed by using MATLAB/Simulink S/W. The vibration suppression effect of semi-active and active suspension system were investigated experimentally by using 1/5-scaled railway vehicle model.

  • PDF

Optical Design of a Modified Catadioptric Omnidirectional Optical System for a Capsule Endoscope to Image Simultaneously Front and Side Views on a RGB/NIR CMOS Sensor (RGB/NIR CMOS 센서에서 정면 영상과 측면 영상을 동시에 결상하는 캡슐 내시경용 개선된 반사굴절식 전방위 광학계의 광학 설계)

  • Hong, Young-Gee;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.286-295
    • /
    • 2021
  • A modified catadioptric omnidirectional optical system (MCOOS) using an RGB/NIR CMOS sensor is optically designed for a capsule endoscope with the front field of view (FOV) in visible light (RGB) and side FOV in visible and near-infrared (NIR) light. The front image is captured by the front imaging lens system of the MCOOS, which consists of an additional three lenses arranged behind the secondary mirror of the catadioptric omnidirectional optical system (COOS) and the imaging lens system of the COOS. The side image is properly formed by the COOS. The Nyquist frequencies of the sensor in the RGB and NIR spectra are 90 lp/mm and 180 lp/mm, respectively. The overall length of 12 mm, F-number of 3.5, and two half-angles of front and side half FOV of 70° and 50°-120° of the MCOOS are determined by the design specifications. As a result, a spatial frequency of 154 lp/mm at a modulation transfer function (MTF) of 0.3, a depth of focus (DOF) of -0.051-+0.052 mm, and a cumulative probability of tolerance (CPT) of 99% are obtained from the COOS. Also, the spatial frequency at MTF of 170 lp/mm, DOF of -0.035-0.051 mm, and CPT of 99.9% are attained from the front-imaging lens system of the optimized MCOOS.