• Title/Summary/Keyword: Secondary Amines

Search Result 117, Processing Time 0.025 seconds

Michael-type Reactions of 1-(X-substituted phenyl)-2-propyn-1-ones with Alicyclic Secondary Amines in MeCN and H2O: Effect of Medium on Reactivity and Transition-State Structure

  • Kim, Song-I;Hwang, So-Jeong;Park, Yoon-Min;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1199-1203
    • /
    • 2010
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for Michael-type reactions of 1-(X-substituted phenyl)-2-propyn-1-ones (2a-f) with a series of alicyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ value increases as the incoming amine becomes more basic and the substituent X changes form an electron-donating group (EDG) to an electron-withdrawing group (EWG). The Br${\o}$nsted-type plots are linear with ${\beta}_{nuc}$ = 0.48 - 0.51. The Hammett plots for the reactions of 2a-f exhibit poor correlations but the corresponding Yukawa-Tsuno plots result in much better linear correlations with ${\rho}$ = 1.57 and r = 0.46 for the reactions with piperidine while ${\rho}$ = 1.72 and r = 0.39 for those with morpholine. The amines employed in this study are less reactive in MeCN than in water for reactions with substrates possessing an EDG, although they are ca. 8 pKa units more basic in the aprotic solvent. This indicates that the transition state (TS) is significantly more destabilized than the ground state (GS) in the aprotic solvent. It has been concluded that the reactions proceed through a stepwise mechanism with a partially charged TS, since such TS would be destabilized in the aprotic solvent due to the electronic repulsion between the negative-dipole end of MeCN and the negative charge of the TS. The fact that primary deuterium kinetic effect is absent supports a stepwise mechanism in which proton transfer occurs after the rate-determining step.

Kinetic Study on Michael-type Reactions of 1-Phenyl-2-propyn-1-one with Alicyclic Secondary Amines: Effect of Medium on Reactivity and Mechanism

  • Hwang, So-Jeong;Park, Youn-Min;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1911-1914
    • /
    • 2008
  • Second-order rate constants (kN) have been measured for Michael-type addition reactions of a series of alicyclic secondary amines to 1-phenyl-2-propyn-1-one (2) in MeCN at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. All the amines studied are less reactive in MeCN than in $H_2O$ although they are more basic in the aprotic solvent by 7-9 p$K_a$ units. The Bronsted-type plot is linear with $\beta_{nuc}$ = 0.40, which is slightly larger than that reported previously for the corresponding reactions in $H_2O$ ($\beta_{nuc}$ = 0.27). Product analysis has shown that only E-isomer is produced. Kinetic isotope effect is absent for the reactions of 2 with morpholine and deuterated morpholine (i.e., $k^H/k^D$ = 1.0). Thus, the reaction has been concluded to proceed through a stepwise mechanism, in which proton transfer occurs after the rate-determining step. The reaction has been suggested to proceed through a tighter transition state in MeCN than in H2O on the basis of the larger $\beta_{nuc}$ in the aprotic solvent. The nature of the transition state has been proposed to be responsible for the decreased reactivity in the aprotic solvent.

Kinetic Study on Nucleophilic Substitution Reactions of 4-Nitrophenyl X-Substituted-2-Methylbenzoates with Cyclic Secondary Amines in Acetonitrile: Reaction Mechanism and Failure of Reactivity-Selectivity Principle

  • Lee, Ji-Youn;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.93-97
    • /
    • 2014
  • A kinetic study is reported on nucleophilic substitution reactions of 4-nitrophenyl X-substituted-2-methylbenzoates (5a-e) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The Hammett plots for the aminolysis of 5a-e are nonlinear, e.g., substrates possessing an electron-donating group (EDG) in the benzoyl moiety deviate negatively from the linear line composed of substrates bearing no EDG. In contrast, the Yukawa-Tsuno plots for the same reactions exhibit excellent linear correlations with ${\rho}_X$ = 0.30-0.59 and r = 0.90-1.15, indicating that the nonlinear Hammett plots are caused by stabilization of the substrates possessing an EDG through resonance interactions but are not due to a change in the rate-determining step (RDS). The Br${\phi}$nsted-type plots are linear with ${\beta}_{nuc}$ = 0.66-0.82. Thus, the aminolysis of 5a-e has been suggested to proceed through a stepwise mechanism in which departure of the leaving group occurs at the RDS. The ${\rho}_X$ and ${\beta}_{nuc}$ values for the aminolysis of 5a-e increase as the reactivity of the substrates and amines increases, indicating that the reactivity-selectivity principle is not applicable to the current reactions.

Solvent Effects on the Nucleophilc Addition (I) Effect of Solvent Polarity on the Nucleophilic Addition of Amine to Phenylvinylketone (친핵성 첨가반응에 대한 용매효과 (I) Phenylvinylketone에 대한 아민의 첨가반응속도에 미치는 용매의 극성효과)

  • Gap-Cheol Shin;Tae-Rin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.287-292
    • /
    • 1992
  • The rate constants of the nucleophilic addition reaction of amines (piperidine and diethylamine) to phenylvinylketone in various solvents have been determined by UV spectrophotometry at $25^{\circ}C$. On the basis of the high sensitivity of the rate to the polarity of the medium, it may be concluded that the reaction intermediate has zwitterionic character. The effect of the solvents on the rate of the bimolecular nucleophilic addition reaction is described well by the Kirkwood equation: The transition state of the reaction has a cyclic structure formed through an intramolecular hydrogen bond. The addition reaction of primary and secondary amines to phenylvinylketone in all solvents take place considerably faster than that of tertiary amine and this results also can be explained by the intermediate products in the reaction have a cyclic structure formed through an intramolecular hydrogen bond for the primary and secondary amines but not for the tertiary amine.

  • PDF

Kinetics and Mechanism for the Reaction of 4-Nitrophenyl 2-Thiophenecarboxylate with Secondary Alicyclic Amines

  • Um, Ik-Hwan;Lee, Eun-Ju;Lee, Jong-Pal
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.381-384
    • /
    • 2002
  • Second-order-rate constants ($k_N$) have been measured spectrophotometrically for the reactions of 4-nitrophenyl 2-thiophenecarboxylate (1a) with a series of secondary alicyclic amines in H2O containing 20 mole % DMSO at 25.0 $^{\circ}C$ . The ester 1a is less reactive than 4-nitrophenyl 2-furoate (1b) but more reactive than 4-nitrophenyl benzoate (1c) except towards piperazinium ion. The Brønsted-type plots for the aminolyses of 1a, 1b and 1c are linear with a $\beta$nuc value of 0.92, 0.84 and 0.85, respectively, indicating that the replacement of the CH=CH group by a sulfur or an oxygen atom in the benzoyl moiety of 1c does not cause any mechanism change. The reaction of piperidine with a series of substituted phenyl 2-thiophenecarboxylates gives a linear Hammett plot with a large $\rho^-$ value ($\rho^-$ = 3.11) when $\sigma^- $ constants are used. The linear Brønsted and Hammett plots with large $\beta$nuc and $\rho^-$ values suggest that the aminolysis of 1a proceeds via rate-determining break-down of the addition intermediate to the products.

Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Thiophenecarboxylates: Effect of ortho-Nitro Group on Reactivity and Mechanism

  • Seo, Jin-A;Chun, Sun-Mee;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1459-1463
    • /
    • 2008
  • Second-order rate constants (kN) have been measured spectrophotometrically for reactions of 3,4-dinitrophenyl 2-thiophenecarboxylate (2) with a series of alicyclic secondary amines in 80 mol % $H_2O$/20 mol % dimethyl sulfoxide at 25.0 ${^{\circ}C}$. The Brønsted-type plot exhibits a downward curvature for the aminolysis of 2. The curved Brønsted-type plot is similar to that reported for the corresponding reactions of 2,4-dinitrophenyl 2- thiophenecarboxylate (1). The reactions of 1 and 2 have been suggested to proceed through the same mechanism, i.e., through a zwitterionic tetrahedral intermediate ($T^{\pm}$) with a change in the rate-determining step. Substrate 2 is less reactive than 1 toward weakly basic amines (e.g., $pK_a$ < 10.4) but becomes more reactive as the basicity of amines increases further. Dissection of kN into the microscopic rate constants has revealed that the reaction of 2 results in a smaller $k_2/k_{-1}$ ratio but larger $k_1$ than the corresponding reaction of 1. Steric hindrance exerted by the ortho-nitro group has been suggested to be responsible for the smaller $k_1$ value found for the reactions of 1.

Syntheses of Amide Bonds and Activations of N-C(sp3) Bonds

  • Hong, Jang-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.175-191
    • /
    • 2017
  • In organic chemistry amide synthesis is performed through condensation of a carboxylic acid and an amine with releasing one equivalent of water via the corresponding ammonium carboxylate salt. This method is suffering from tedious processes and poor atom-economy due to the adverse thermodynamics of the equilibrium and the high activation barrier for direct coupling of a carboxylic acid and an amine. Most of the chemical approaches to amides formations have been therefore being developed, they are mainly focused on secondary amides. Direct carbonylations of tertiary amines to amides have been an exotic field unresolved, in particular direct carbonylation of trimethylamine in lack of commercial need has been attracted much interests due to the versatile product of N,N-dimethylacetamide in chemical industries and the activation of robust N-C($sp^3$) bond in tertiary amine academically. This review is focused mainly on carbonylation of trimethylamine as one of the typical tertiary amines by transition metals of cobalt, rhodium, platinum, and palladium including the role of methyl iodide as a promoter, the intermediate formation of acyl iodide, the coordination ability of trimethylamine to transition metal catalysts, and any possibility of CO insertion into the bond of Me-N in trimethylamine. In addition reactions of acyl halides as an activated form of acetic acid with amines are reviewed in brief since acyl iodide is suggested as a critical intermediate in those carbonylations of trimethylamine.

Aminolyses of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Furoates: Effect of ortho-Substituent on Reactivity and Mechanism

  • Um, Ik-Hwan;Akhtar, Kalsoom
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.772-776
    • /
    • 2008
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for reactions of 3,4-dintrophenyl 2-furoate (2) with a series of secondary alicyclic amines in 80 mol % $H_2O$/20 mol % dimethyl sulfoxide (DMSO) at 25.0 ${^{\circ}C}$. The Bronsted-type plot exhibits a downward curvature for the aminolysis of 2, which is similar to that reported for the corresponding reactions of 2,4-dintrophenyl 2-furoate (1). Substrate 2 is less reactive than 1 toward all the amines studied but the reactivity difference becomes smaller as the amine basicity increases. Dissection of the second-order rate constants into the microscopic rate constants has revealed that the reaction of 2 results in a smaller $k_2/k_{-1}$ ratio but slightly larger $k_1$ value than that of 1. Steric hindrance has been suggested to be responsible for the smaller $k_1$ value found for the reactions of 1, since the ortho-substituent of 1 would inhibit the attack of amines (i.e., the $k_1$ process).

Reaction of Drugs with Sodium Nitroprusside as a Source of Nitrosamines

  • Park, Jeen-Woo;Gary E. Means
    • Archives of Pharmacal Research
    • /
    • v.14 no.2
    • /
    • pp.118-123
    • /
    • 1991
  • Potentially dangerous nitrosamines have been shown to result from the reaction of sodium nitrogusside with several drugs under physiological conditions (pH 7.3 and $37^\circ{C})$. In each case the products were identical to those produced upon reaction with nitrous acid at much lower pH values. Reaction rates were shown to reflect a first order dependence on both amine and nitroprusside concentrations and to increase at higher pH values, approximately in proportion to concentrations of unprotonated amine. Fast reactions of sodium nitroprusside with reduced glutathione, cysteine, and ascorbate suppress but do not prevent the conversion of amines into N-nitrosamines. These results show sodium nitroprusside to be very potent nitrosating agent under physiological conditions and suggested nitrosamines may be formed during its normal pharmacological administration.

  • PDF

Determination of Amine Compounds Using 1-(N,N-Dimethylamino) pyrene-6-sulfonyl chloride as a New Fluorescent Derivatizing Reagent for HPLC (새로운 HPLC용 형광유도체화제인 1-(N,N-dimethylamino) pyrene-6-sulfonyl chloride를 이용한 아민화합물의 분석)

  • 이윤중;김용희;조정길
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.288-294
    • /
    • 1991
  • A new fluorescent derivatizing reagent was developed to be used in HPLC for the trace determination of primary and secondary amines. This new reagent, 1-(N,N-dimethylamino)pyrene-6-sulfonyl chloride, was synthesized by the chlorination of sodium 1-(N,N-dimethylamino)pyrene-6-sulfonate which was obtained from 1-(N,N-dimethylamino)pyrene after sulfonation. Ephedrine and norephedrine were derivatized quantitatively by this reagent. The optimum conditions for the derivatization such as pH, reagent concentration, reaction time and reaction temperature ware examined. The structures of derivatives were identified by IR, $^{1}$H-NMR and MS methods. The fluorescence properties and the stability of the derivatives were examined. The derivatives were separated on silica column with an isocratic elution using the mixture of n-hexane and ethylacetate and monitored by fluorescene detector. Linear calibration curves were obtained and detection limits in a 10 $\mu$l injection volume were 5 picomole for ephedrine and norephedrine.

  • PDF