Browse > Article
http://dx.doi.org/10.5012/bkcs.2002.23.3.381

Kinetics and Mechanism for the Reaction of 4-Nitrophenyl 2-Thiophenecarboxylate with Secondary Alicyclic Amines  

Um, Ik-Hwan
Lee, Eun-Ju
Lee, Jong-Pal
Publication Information
Abstract
Second-order-rate constants ($k_N$) have been measured spectrophotometrically for the reactions of 4-nitrophenyl 2-thiophenecarboxylate (1a) with a series of secondary alicyclic amines in H2O containing 20 mole % DMSO at 25.0 $^{\circ}C$ . The ester 1a is less reactive than 4-nitrophenyl 2-furoate (1b) but more reactive than 4-nitrophenyl benzoate (1c) except towards piperazinium ion. The Brønsted-type plots for the aminolyses of 1a, 1b and 1c are linear with a $\beta$nuc value of 0.92, 0.84 and 0.85, respectively, indicating that the replacement of the CH=CH group by a sulfur or an oxygen atom in the benzoyl moiety of 1c does not cause any mechanism change. The reaction of piperidine with a series of substituted phenyl 2-thiophenecarboxylates gives a linear Hammett plot with a large $\rho^-$ value ($\rho^-$ = 3.11) when $\sigma^- $ constants are used. The linear Brønsted and Hammett plots with large $\beta$nuc and $\rho^-$ values suggest that the aminolysis of 1a proceeds via rate-determining break-down of the addition intermediate to the products.
Keywords
Aminolysis; Rate-determining step; Mechanism; Hammett equation;
Citations & Related Records

Times Cited By Web Of Science : 14  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Um, I. H.; Chung, E. K.; Kwon, D. S. TetrahedronLett. 1997, 38, 4787.   DOI   ScienceOn
2 Colthurst, M. J.; Williams, A. J. Chem. Soc., Perkin Trans. 21997, 1493.
3 Caplow, M.; Jencks, W. P.Biochemistry 1962, 1, 883.   DOI   ScienceOn
4 Um, I. H.; Park, Y. M.; Shin, E. H.Bull. Korean Chem. Soc. 1999, 20, 392.
5 Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111, 971.   DOI
6 Albert, A. Physical Methods in Heterocyclic Chemistry; Katritzky,A. R., Ed.; Academic Press: London, 1963; Vol. 1, p 44.
7 Castro, E. A. Chem. Rev. 1999, 99, 3505.   DOI   ScienceOn
8 Castro, E. A.; Santander, C. L. J. Org. Chem. 1985,50, 3595.   DOI
9 Williams, A. Chem. Soc. Rev. 1994, 23, 93.   DOI   ScienceOn
10 Castro, E. A.; Steinfort, G. B. J. Chem. Soc., PerkinTrans. II 1983, 453.
11 Jencks, W. P.; Brant, S. R.;Gandler, J. R.; Fendrich, G.; Nakamura, C. J. Am. Chem. Soc.1982, 104, 7045.   DOI
12 Ba-Saif, S.;Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1989, 111, 2647.   DOI
13 Okuyama, T.; Takano, H.; Senda, K. Bull. Chem. Soc. Jpn.1996, 69, 2639.   DOI   ScienceOn
14 Techniques of Organic Chemistry, 4th ed.; Bernasconi, C. F.,Ed.; Wiley: New York, 1986; vol. 6.
15 Chapman, N. B.; Shorter,J. Advances in Linear Free Energy Relationships; Plenum:London, 1972.
16 Kirsch, J. F.; Clewell, W.; Simon, A. J.Org. Chem. 1968, 33, 127.   DOI
17 Um, I. H.; Chung, E.K.; Lee, S. M. Can. J. Chem. 1998, 76, 729.   DOI
18 Castro, E. A.; Valdiva, J. L. J. Org. Chem. 1986,51, 1668.   DOI
19 Menger, F. M.; Smith, J. H. J. Am. Chem.Soc. 1972, 94, 3824.   DOI
20 Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 8479.   DOI
21 Castro, E. A.; Araneda, C. A. J. Org. Chem. 1997, 62,126.   DOI   ScienceOn
22 Lee, J. P.; Yoon, J. H.; Um, I. H. Bull. KoreanChem. Soc. 1999, 20, 805.
23 Stefanidis, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. J. Am.Chem. Soc. 1993, 115, 1650.   DOI   ScienceOn
24 Vogel, A. I. Practical Organic Chemistry; Longman's Green andCo.: London, 1962; p 792.
25 Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1996, 61,3501.   DOI   ScienceOn
26 Koh, H. J.; Lee, J. W.;Lee, H. W.; Lee, I. New J. Chem. 1997, 21, 447.
27 Correia, V. R.; Cuccovia, I. M.; Chaimovich, H. J. Phys. Org.Chem. 1991, 4, 13.   DOI
28 Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem.2000, 65, 5659.   DOI   ScienceOn
29 Oh, H. K.; Park, C. Y.; Lee, J. M.; Lee, I. Bull. Korean Chem.Soc. 2001, 22, 383.
30 Hupe, D. J.; Jencks, W. P. J. Am. Chem. Soc.1977, 99, 451.   DOI
31 Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y.S.; Lee, I. J. Org. Chem. 1997, 62, 5780.   DOI   ScienceOn
32 Castro, E. A.;Cubillos, M.; Santos, J. G. J. Org. Chem. 1998, 63, 6820.   DOI   ScienceOn
33 DeTar, D. F. J. Am. Chem. Soc. 1982, 104,7205.   DOI
34 Um, I. H.; Min, J. S.; Lee, H. W. Can. J. Chem. 1999, 77, 659.   DOI   ScienceOn
35 Um, I. H.; Hong, Y. J.; Kwon, D. S.Tetrahedron 1997, 53, 5073.   DOI   ScienceOn
36 Um, I. H.; Yeom,E. S.; Kwon, H. J.; Kwon, D. S. Bull. Korean Chem. Soc. 1997,18, 865.
37 Oh, H. K.; Jeong, J. Bull. Korean Chem. Soc. 2001, 22, 1123.
38 Jones, R. A. Y. Physical and Mechanistic Organic Chemistry, 2nd ed.; Cambridge University Press: London, 1984; p 65.
39 Um, I. H.; Kwon, H. J.; Kwon, D. S.; Park, J. Y. J. Chem. Res.(s)1995, 301
40 Jencks, W. P. Catalysis in Chemistry andEnzymology; McGraw-Hill Book Company: New York, 1969; pp463.
41 Um, I. H.; Kwon, H. J.; Kwon, D. S.; Park, J. Y. J. Chem. Res.(M) 1995, 1801.