Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.1.93

Kinetic Study on Nucleophilic Substitution Reactions of 4-Nitrophenyl X-Substituted-2-Methylbenzoates with Cyclic Secondary Amines in Acetonitrile: Reaction Mechanism and Failure of Reactivity-Selectivity Principle  

Lee, Ji-Youn (Department of Chemistry and Nano Science, Ewha Womans University)
Kim, Min-Young (Department of Chemistry and Nano Science, Ewha Womans University)
Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
Publication Information
Abstract
A kinetic study is reported on nucleophilic substitution reactions of 4-nitrophenyl X-substituted-2-methylbenzoates (5a-e) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The Hammett plots for the aminolysis of 5a-e are nonlinear, e.g., substrates possessing an electron-donating group (EDG) in the benzoyl moiety deviate negatively from the linear line composed of substrates bearing no EDG. In contrast, the Yukawa-Tsuno plots for the same reactions exhibit excellent linear correlations with ${\rho}_X$ = 0.30-0.59 and r = 0.90-1.15, indicating that the nonlinear Hammett plots are caused by stabilization of the substrates possessing an EDG through resonance interactions but are not due to a change in the rate-determining step (RDS). The Br${\phi}$nsted-type plots are linear with ${\beta}_{nuc}$ = 0.66-0.82. Thus, the aminolysis of 5a-e has been suggested to proceed through a stepwise mechanism in which departure of the leaving group occurs at the RDS. The ${\rho}_X$ and ${\beta}_{nuc}$ values for the aminolysis of 5a-e increase as the reactivity of the substrates and amines increases, indicating that the reactivity-selectivity principle is not applicable to the current reactions.
Keywords
Aminolysis; Reaction mechanism; Hammett plot; Yukawa-Tsuno plot; Brønsted-type plot;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 (a) Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Singapore, 1997; Chapt. 7.
2 (b) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper Collins Publishers: New York, 1987; Chapt. 8.5.
3 (c) Jencks, W. P. Catalysis in Chemistry and Enzymology, McGraw Hill: New York, 1969; Chapt. 10.
4 (d) Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry, Brooks/Cole: New York, 1988; pp 371-386.
5 (e) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper Collins Publishers: New York, 1987; pp 143-151.
6 (a) Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696.
7 (b) Castro, E. A. J. Sulfur Chem. 2007, 28, 401-429.   DOI   ScienceOn
8 (c) Castro, E. A. Chem. Rev. 1999, 99, 3505-3524.   DOI   ScienceOn
9 (d) Jencks, W. P. Chem. Rev. 1985, 85, 511-527.   DOI
10 (e) Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345-375.   DOI
11 (f) Jencks, W. P. Acc. Chem. Res. 1980, 13, 161-169.   DOI
12 (a) Pavez, P.; Millan D.; Morales, J. I.; Castro, E. A.; Lopez A., C. Santos, J. G. J. Org. Chem. 2013, 78, 9670-9676.   DOI   ScienceOn
13 (b) Aguayo, R.; Arias, F.; Canete, A.; Zuniga, C.; Castro, E. A.; Pavez, P.; Santos, J. G. Int. J. Chem. Kinet. 2013, 45, 202-211.   DOI   ScienceOn
14 (c) Castro, E. A.; Ugarte, D.; Rojas, M. F.; Pavez, P.; Santos, J. G. Int. J. Chem. Kinet. 2011, 43, 708-714.   DOI   ScienceOn
15 (d) Castro, E. A.; Aliaga, M.; Campodonico, P. R.; Cepeda, M.; Contreras. R.; Santos, J. G. J. Org. Chem. 2009, 74, 9173-9179.   DOI   ScienceOn
16 (e) Castro, E. A.; Ramos, M.; Santos, J. G. J. Org. Chem. 2009, 74, 6374-6377.   DOI   ScienceOn
17 (f) Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679-2685.   DOI   ScienceOn
18 (g) Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092.   DOI   ScienceOn
19 (a) Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824-3829.   DOI
20 (b) Kirsch, J. F.; Kline, A. J. Am. Chem. Soc. 1969, 91, 1841-1847.   DOI
21 (c) Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1997, 179-183.
22 (d) Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1995, 691-696.
23 (e) Menger, F. M.; Brian, J.; Azov, V. A. Angew. Chem. Int. Ed. 2002, 41, 2581-2584.   DOI   ScienceOn
24 (f) Perreux, L.; Loupy, A.; Delmotte, M. Tetrahedron 2003, 59, 2185-2189.   DOI   ScienceOn
25 (g) Fife, T. H.; Chauffe, L. J. Org. Chem. 2000, 65, 3579-3586.   DOI   ScienceOn
26 (h) Spillane, W. J.; Brack, C. J. Chem. Soc. Perkin Trans. 2 1998, 2381-2384.
27 (i) Llinas, A.; Page, M. I. Org. Biomol. Chem. 2004, 2, 651-654.   DOI   ScienceOn
28 (a) Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430.   DOI   ScienceOn
29 (b) Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284.   DOI   ScienceOn
30 (c) Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629.   DOI   ScienceOn
31 (d) Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244.   DOI   ScienceOn
32 (e) Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557-567.   DOI   ScienceOn
33 (a) Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995-8998.   DOI   ScienceOn
34 (b) Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874-3877.   DOI   ScienceOn
35 Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663.   DOI   ScienceOn
36 (c) Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313-317.   DOI   ScienceOn
37 (d) Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 2306-2310.
38 (e) Lim, W. M.; Kim, W. K.; Jung, H. J.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 252-256.
39 (a) Um, I. H.; Hwang, S. J.; Yoon, S. R.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677.   DOI   ScienceOn
40 (b) Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746.   DOI   ScienceOn
41 (c) Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999-9005.   DOI   ScienceOn
42 Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078.   DOI   ScienceOn
43 Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829.   DOI   ScienceOn
44 (a) Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942.   DOI   ScienceOn
45 (b) Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243.   DOI   ScienceOn
46 Um, I. H.; Bea, A. R. J. Org. Chem. 2012, 77, 5781-5787.   DOI   ScienceOn
47 Lee, J. Y.; Kim, M. Y.; Um, I. H. Bull. Korean Chem. Soc. 2013, 34, 3795-3799.   DOI   ScienceOn
48 (a) Spillane, W. J.; McGrath, P.; Brack, C.; O'Byrne, A. B. J. Org. Chem. 2001, 66, 6313-6316.   DOI   ScienceOn
49 (b) Um, I. H.; Bae, A. R. J. Org. Chem. 2011, 76, 7510-7515.   DOI   ScienceOn
50 Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159.
51 (a) Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480.   DOI   ScienceOn
52 (b) Swansburg, S.; Buncel, E.; Lemieux, R. P. J. Am. Chem. Soc. 2000, 122, 6594-6600.   DOI   ScienceOn
53 (c) Carrol, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/Cole: New York, 1998, pp. 371-386.
54 (d) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper Collins Publishers: New York, 1987, pp. 143-151.
55 (a) Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385.
56 (b) Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139.   DOI   ScienceOn
57 (c) Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970.   DOI
58 (a) Than, S.; Badal, M.; Itoh, S.; Mishima, M. J. Phys. Org. Chem. 2010, 23, 411-417.
59 (b) Itoh, S.; Badal, M.; Mishima, M. J. Phys. Org. Chem. 2009, 113, 10075-10080.   DOI   ScienceOn
60 (c) Than, S.; Maeda, H.; Irie, M.; Kikukawa, K.; Mishima, M. Int. J. Mass Spectrom. 2007, 263, 205-214.
61 (d) Maeda, H.; Irie, M.; Than, S.; Kikukawa, K.; Mishima, M. Bull. Chem. Soc. Jpn. 2007, 80, 195-203.   DOI   ScienceOn
62 (e) Fujio, M.; Alam, M. A.; Umezaki, Y.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2007, 80, 2378-2383.   DOI   ScienceOn
63 (f) Mishima, M.; Maeda, H.; Than, S.; Irie, M. J. Phys. Org. Chem. 2006, 19, 616-623.   DOI   ScienceOn
64 Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159.
65 (a) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd Ed.; Harper/Collins: New York, 1987; p 148.
66 (a) Choi, H.; Koo, I. S. Bull. Korean Chem. Soc. 2012, 33, 499-504.   DOI   ScienceOn
67 (b) Um, I. H.; Bea, A. R. Bull. Korean Chem. Soc. 2012, 33, 1547-1550.   DOI
68 (c) Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 1539-1542.   DOI
69 (b) Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96-103.   DOI
70 (c) Ruasse, M. F.; Dubois, J. E. J. Am. Chem. Soc. 1984, 106, 3230-3234.   DOI
71 Um, I. H.; Lee, J. Y.; Lee, H. W.; Nagano, Y.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987.   DOI   ScienceOn