• 제목/요약/키워드: Secondary Amines

검색결과 117건 처리시간 0.024초

Kinetic Study on Aminolysis of Phenyl 2-Pyridyl Carbonate in Acetonitrile: Effect of Intramolecular H-bonding Interaction on Reactivity and Reaction Mechanism

  • Song, Ji-Hyun;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.2081-2085
    • /
    • 2014
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of phenyl 2- pyridyl carbonate (6) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plot for the reaction of 6 is linear with ${\beta}_{nuc}$ = 0.54, which is typical for reactions reported previously to proceed through a concerted mechanism. Substrate 6 is over $10^3$ times more reactive than 2-pyridyl benzoate (5), although the reactions of 6 and 5 proceed through the same mechanism. A combination of steric hindrance, inductive effect and resonance contribution is responsible for the kinetic results. The reactions of 6 and 5 proceed through a cyclic transition state (TS) in which H-bonding interactions increase the nucleofugality of the leaving group (i.e., 2-pyridiniumoxide). The enhanced nucleofugality forces the reactions of 6 and 5 to proceed through a concerted mechanism. In contrast, the corresponding reaction of 4-nitrophenyl 2-pyridyl carbonate (7) proceeds through a stepwise mechanism with quantitative liberation of 4-nitrophenoxide ion as the leaving group, indicating that replacement of the 4-nitrophenoxy group in 7 by the PhO group in 6 changes the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway) as well as the leaving group (i.e., from 4-nitrophenoxide to 2-pyridiniumoxide). The strong electron-withdrawing ability of the 4-nitrophenoxy group in 7 inhibits formation of a H-bonded cyclic TS. The presence or absence of a H-bonded cyclic TS governs the reaction mechanism (i.e., a concerted or stepwise mechanism) as well as the leaving group (i.e., 2-pyridiniumoxide or 4-nitrophenoxide).

Kinetic Study on Aminolysis of Y-Substituted-Phenyl Picolinates: Effect of H-Bonding Interaction on Reactivity and Transition-State Structure

  • Kim, Min-Young;Kang, Tae-Ah;Yoon, Jung Hwan;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2410-2414
    • /
    • 2014
  • A kinetic study is reported on nucleophilic substitution reactions of Y-substituted-phenyl picolinates (7a-7h) with a series of cyclic secondary amines in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. Comparison of the kinetic results with those reported previously for the corresponding reactions of Y-substituted-phenyl benzoates (1a-1f) reveals that 7a-7h are significantly more reactive than 1a-1f. The Br${\o}$nsted-type plot for the aminolysis of 4-nitrophenyl picolinate (7a) is linear with ${\beta}_{nuc}=0.78$, which is typical for reactions proceeding through a stepwise mechanism with expulsion of the leaving group being the rate-determining step. The Br${\o}$nsted-type plots for the piperidinolysis of 7a-7h and 1a-1f are also linear with ${\beta}_{lg}=-1.04$ and -1.39, respectively, indicating that the more reactive 7a-7h are less selective than the less reactive 1a-1f to the leaving-group basicity. One might suggest that the enhanced reactivity of 7a-7h is due to the inductive effect exerted by the electronegative N atom in the picolinyl moiety, while the decreased selectivity of the more reactive substrates is in accord with the reactivity-selectivity principle. However, the nature of intermediate (e.g., a stabilized cyclic intermediate through the intramolecular H-bonding interaction for the reactions of 7a-7h, which is structurally not possible for the reactions of 1a-1f) is also responsible for the enhanced reactivity with a decreased selectivity.

Development of Novel Pyrrolidine Organocatalyst

  • 임설희;강성호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.198-198
    • /
    • 2011
  • Organocatalysis is a relatively new and popular area within the field of chiral molecule synthesis. It is one of the main branches of enantioselective synthesis with enzymatic and organometallic catalysis. In recent years, immense high quality studies on catalysis by chiral secondary amines were reported. These progresses instantly led to different organocatalytic activation concepts, so thousands of researchers from academia and the chemical industry are currently involved in this field and new ideas, new approaches, and creative thinking have been rapidly emerged. Organocatalysts, some of which are natural products, appear to solve the problems of metal catalysts. Compared to metal-based catalysis, they have many advantages including savings in cost, time, and energy, easier experimental procedure, and reduction of chemical waste. These benefits originate from the following factors. First, organocatalysts are generally stable in oxygen and water in the atmosphere, there is no need for special equipments or experimental techniques to operate under anhydrous or anaerobic conditions. Second, organic reagents are naturally available from biological materials as single enantiomers that they are easy and cheap to prepare which makes them suitable for small-scale to industrial-scale reactions. Third, in terms of safety related catalysis, small organic molecules are non-toxic and environmentally friendly. Therefore, the purpose of this research is to develop novel synthetic methods and design for various organocatalyst. Furthermore, it is expected that these organocatalysts can be applied to a variety of asymmetric reactions and study the transition state of these reactions using a metal sulface. Here, we report the synthesis of unprecedented organocatalysts, proline and pyrrolidine derivatives with quaternary carbon center.

  • PDF

에폭사이드와 암모니아의 반응을 이용한 합성아민의 이산화탄소 흡수연구 (The CO2 Absorption of Synthetic Amine using the Ethylene Oxide-Ammonia Reaction)

  • 최정호;윤여일;박성열;백일현;남성찬
    • 한국수소및신에너지학회논문집
    • /
    • 제28권5호
    • /
    • pp.561-569
    • /
    • 2017
  • In this study, a synthetic amine made using the ethylene oxide-ammonia reaction was used as an absorbent to remove carbon dioxide. Existing absorbents were used in a mix in order to improve performance; however, because the ethylene oxide-ammonia reaction generates primary, secondary, and tertiary amines simultaneously, it has the merit that separate mixing of the absorbents was not needed. The performance of carbon dioxide absorption with the synthetic amine was compared to that of MEA. As a result of an experiment, it was determined that the $CO_2$ loading was 1.15 times better than that of MEA (a commonly used amine), while the cyclic capacity was 2.28 times higher. Because the heat of reaction was 1.10 times lower than for MEA, the synthetic amine showed superior performance in terms of absorption and regeneration.

Kinetic Study on Aminolysis of Y-Substituted-Phenyl X-Substituted-Benzoates: Effects of Substituents X and Y on Reactivity and Reaction Mechanism

  • Jeon, Seong Hoon;Kim, Hyun Soo;Han, Young Joon;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.471-476
    • /
    • 2014
  • A kinetic study on aminolysis of 2-chloro-4-nitrophenyl X-substituted-benzoates (2a-k) in 80 mol % $H_2O/_20mol%$ DMSO at $25.0^{\circ}C$ is reported. The Br${\emptyset}$nsted-type plot for the reactions of 2-chloro-4-nitrophenyl benzoate (2g) with a series of cyclic secondary amines curves downward (e.g., ${\beta}_1=0.25$, ${\beta}_2=0.85$ and $pK_a^o=10.3$), which is typical of reactions reported to proceed through a stepwise mechanism with a change in ratedetermining step (RDS). The Hammett plot for the reactions of 2a-k with piperidine consists of two intersecting straight lines, while the corresponding Yukawa-Tsuno plot exhibits an excellent linear correlation with ${\rho}_X=1.15$ and r = 0.59. Thus, it has been concluded that the nonlinear Hammett plot is not due to a change in RDS but is caused by stabilization of substrates through resonance interactions between the electron-donating substituent and the C=O bond. Substrates possessing a substituent at the 2-position of the leaving aryloxide deviate negatively from the curved Br${\emptyset}$nsted-type plot for the reactions of Y-substituted-phenyl benzoates (3a-i), implying that the steric hindrance exerted by the substituent at the 2-position is an important factor which governs the reactivity of Y-substituted-phenyl benzoates.

Aminolysis of 2,4-Dinitrophenyl 2-Furoate and 2-Thiophenecarboxylate: Effect of Modification of Nonleaving Group from Furoyl to Thiophenecarbonyl on Reactivity and Mechanism

  • Um, Ik-Hwan;Min, Se-Won;Chuna, Sun-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권7호
    • /
    • pp.1359-1363
    • /
    • 2008
  • Second-order rate constants have been determined spectrophotometrically for reactions of 2,4-dinitrophenyl 2- thiophenecarboxylate (2) with a series of alicyclic secondary amines in 80 mol % $H_2O$/20 mol % DMSO at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. The Brønsted-type plot exhibits a downward curvature, i.e., the slope decreases from 0.74 to 0.34 as the amine basicity increases. The $pK_a$ at the center of the Brønsted curvature, defined as $pK_a^o$, has been determined to be 9.1. Comparison of the Brønsted-type plot for the reactions of 2 with that for the corresponding reactions of 2,4-dinitrophenyl 2-furoate (1) suggests that reactions of 1 and 2 proceed through a common mechanism, although 2 is less reactive than 1. The curved Brønsted-type plot has been interpreted as a change in RDS of a stepwise mechanism. The replacement of the O atom in the furoyl ring by an S atom (1 $\rightarrow$ 2) does not alter the reaction mechanism but causes a decrease in reactivity. Dissection of the apparent second-order rate constants into the microscopic rate constants has revealed that the $k_2/k_{-1}$ ratio is not influenced upon changing the nonleaving group from furoyl to thiophenecarbonyl. However, $k_1$ has been calculated to be smaller for the reactions of 2 than for the corresponding reactions of 1, indicating that the C=O bond in the thiophenecarboxylate 2 is less electrophilic than that in the furoate 1. The smaller k1 for the reactions of 2 is fully responsible for the fact that 2 is less reactive than 1.

Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Nonleaving Groups on Reactivity and Reaction Mechanism

  • Kim, Min-Young;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1115-1119
    • /
    • 2013
  • A kinetic study is reported for nucleophilic substitution reactions of benzyl 2-pyridyl thionocarbonate (5b) and t-butyl 2-pyridyl thionocarbonate (6b) with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. General-base catalysis, which has often been reported to occur for aminolysis of esters possessing a C=S electrophilic center, is absent for the reactions of 5b and 6b. The Br${\o}$nsted-type plots for the reactions of 5b and 6b are linear with ${\beta}_{nuc}$ = 0.29 and 0.43, respectively, indicating that the reactions of 5b proceed through a stepwise mechanism with formation of a zwitterionic tetrahedral intermediate ($T^{\pm}$) being the rate-determining step while those of 6b proceed through a concerted mechanism. The reactivity of 5b and 6b is similar to that of their oxygen analogues (i.e., benzyl 2-pyridyl carbonate 5a and t-butyl 2-pyridyl carbonate 6a, respectively), indicating that the effect of modification of the electrophilic center from C=O to C=S (i.e., from 5a to 5b and from 6a to 6b) on reactivity is insignificant. In contrast, 6b is much less reactive than 5b, indicating that the replacement of the $PhCH_2$ in 5b by the t-Bu in 6b results in a significant decrease in reactivity as well as a change in the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway). It has been concluded that the contrasting reactivity and reaction mechanism for the reactions of 5b and 6b are not due to the electronic effects of $PhCH_2$ and t-Bu but are caused by the large steric hindrance exerted by the bulky t-Bu in 6b.

수소 결합에 의한 삼차원의 Copper(II) 거대고리 착물과 2,5-Pyridinedicarboxylate와의 자기조립 (Self-Assembly of Three-Dimensional Copper(II) Macrocyclic Complex with 2,5-Pyridinedicarboxylate Linked by Hydrogen Bond)

  • 최기영;류해일;김용선
    • 대한화학회지
    • /
    • 제47권2호
    • /
    • pp.104-108
    • /
    • 2003
  • $[Cu(L)]Cl_2{\cdot}2H_2O(L=3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,0^{1.18},0^{7.12}]docosane)$과 2,5-pyridinedicarboxylate(pdc)의 반응으로부터 $[Cu(L)(H_2O)](pdc){\cdot}6H_2O(1)$가 합성되었다. 화합물 1의 구조가 X-ray 회절법 및 분광학적 방법으로 규명되었다. 중심 copper 원자는 거대고리 리간드로부터 4개의 이차 아민과 축방향 위치의 물분자로 결합된 약간 일그러진 사각뿔 구조를 갖는다. 또한 분자간 수소결합은 삼차원의 분자구조를 형성한다.

A Kinetic Study on Aminolysis of S-4-Nitrophenyl Thiobenzoate in H2O Containing 20 mol % DMSO and 44 wt % EtOH: Effect of Medium on Reactivity and Mechanism

  • Ahn, Jung-Ae;Park, Youn-Min;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.214-218
    • /
    • 2009
  • Second-order rate constants ($k_N$) have been measured for nucleophilic substitution reactions of S-4-nitrophenyl thiobenzoate with a series of alicyclic secondary amines in $H_2O$ containing 20 mol % DMSO at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. The Br$\phi$nsted-type plot exhibits a downward curvature, i.e., $\beta_{nuc}$ decreases from 0.94 to 0.34 as the amine basicity increases. The reactions in the aqueous DMSO have also been suggested to proceed through a zwitterionic tetrahedral intermediate (T${\pm}$) with change in the RDS on the basis of the curved Br$\phi$nsted-type plot. The reactions in the aqueous DMSO exhibit larger $k_N$ values than those in the aqueous EtOH. The macroscopic rate constants ($k_N$) for the reactions in the two solvent systems have been dissected into the microscopic rate constants ($k_1\;and\;k_2/k_{-1}$ ratio) to investigate effect of medium on reactivity in the microscopic level. It has been found that the $k_2/k_{-1}$ ratios are similar for the reactions in the two solvent systems, while $k_1$ values are larger for the reactions in 20 mol % DMSO than for those in 44 wt % EtOH, indicating that the larger $k_1$ is mainly responsible for the larger $k_N$. It has been suggested that the transition state is more stabilized in 20 mol % DMSO through mutual polarizability interaction than in 44 wt % EtOH through H-bonding interaction.

A Kinetic Study on Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Polarizability and Steric Hindrance on Reactivity and Reaction Mechanism

  • Kim, Min-Young;Bae, Ae Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2325-2329
    • /
    • 2013
  • Second-order rate constants $k_N$ have been measured for reactions of benzyl 2-pyridyl thionocarbonate (4b) and t-butyl 2-pyridyl thionocarbonate (5b) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ values for the reactions of 4b and 5b have been compared with those reported previously for the corresponding reactions of benzyl 2-pyridyl carbonate (4a) and t-butyl 2-pyridyl carbonate (5a) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and reaction mechanism. The thiono compound 4b is more reactive than its oxygen analogue 4a. The Br${\o}$nsted-type plots for the reactions of 4a and 4b are linear with ${\beta}_{nuc}=0.57$ and 0.37, respectively. The reactions of 4a were previously reported to proceed through a concerted mechanism, while those of 4b in this study have been concluded to proceed through a stepwise mechanism with formation of an intermediate being the rate-determining step on the basis of the ${\beta}_{nuc}$ value of 0.37. Enhanced polarizability upon changing the C=O in 4a by C=S has been suggested to be responsible for the reactivity order and the contrasting reaction mechanisms. In contrast, the reactivity of 5a and 5b is similar, but they are much less reactive than 4a and 4b. Furthermore, the reactions of 5a and 5b have been concluded to proceed through the same mechanism (i.e., a concerted mechanism) on the basis of linear Bronsted-type plots with ${\beta}_{nuc}=0.45$ or 0.47. It has been concluded that the strong steric hindrance exerted by the t-Bu in 5a and 5b causes a decrease in their reactivity and forces the reactions to proceed through a concerted mechanism.