• Title/Summary/Keyword: Secondary Air System

Search Result 272, Processing Time 0.032 seconds

Size Estimation of Microalgal System for Nitrogen Removal (미세조류를 이용한 질소제거 장치의 크기)

  • 김한욱;이우성;이철균
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.236-240
    • /
    • 2004
  • Korean wastewaters have higher nitrogen concentrations than typical wastewaters of other countries. Most treatment processes such as activated sludge processes will need to supplement extra carbon sources for a complete removal of remaining nitrogen after the initial wastewater treatment, Because of these difficult matters, we have searched wastewater treatment methods that require no additional carbon sources. Wastewater treatment by microalgae in photobioreactors, using a green eukaryotic microalgae, Chlorella kessleri, showed a promising results and thus was selected to study further. This system is not intended to replace the conventional system but is to assist the existing biological treatment systems as a supplemental nitrogen removal process. Thus the secondary treated livestock wastewater was tested. Column type photobioreactors developed in our laboratory were used. When aerated with 5% CO$_2$ balanced with air at 1 vvm and illuminated at 100 ${\mu}$mol/㎡/s under 25$^{\circ}C$ and PH 7-8 by CO$_2$ buffering effect, the maximum nitrogen removal rate was 2.6 mg/L/hr. The results confirmed a possibility of microalgal wastewater treatment system as a secondary system to remove extra nitrogen sources. Based on these experimental results, the size of the optimal microalgal wastewater system was calculated. For the wastewater whose initial nitrogen concentration of 150 mg/L, the optimal batch system was found to be a 2 stage system with a combined retention time of 4.6 day. From the continuous experiments, nitrogen removal rates were examined under different dilution rates and 2 stage system was also found to be the optimal system. The combined retention time for the continuous system was 3.5 days. It is expected that conventional biological wastewater treatment systems followed by microalgal systems would reliably decrease the nitrogen concentration below the government criteria even for the livestock wastewater with low C/N ratio.

An analysis of the curriculum and textbooks for air and correspondence high school in Korea (방송통신고등학교 영어과 교육과정 및 교과서 분석)

  • Lee, So-Young
    • English Language & Literature Teaching
    • /
    • v.11 no.4
    • /
    • pp.287-304
    • /
    • 2005
  • Since Air and Correspondence High School (ACHS) in Korea was established in 1974, it has been serving many people who couldn't take the opportunities for learning in the regular high school due to several reasons. Regardless of the rapid change in technologies and educational needs during the past 31 years, however, ACHS hasn't changed much. Concerns have been recently made about the validity of the unchanged school system and many issues have been discussed relating to the innovation of the school system. Focusing on the teaching and learning contents, one of the important issues with respect to the school system, this paper examines the 7th English Curriculum for ACHS. The paper also investigates the textbooks used in ACHS to see how closely they align with the students' English proficiency and ACHS' instructional method by employing McDonough and Shaw's(1993) framework for textbook analysis. The results revealed that the current curriculum does not sufficiently reflect ACHS's characteristics, which leads to the adoption and development of inappropriate textbooks in terms of overall coherence, proficiency level, etc. The results suggest that the development of the curriculum and textbooks for ACHS should be based upon the students' needs and their level of proficiency rather than depending on the national curriculum and government-authorized textbooks intended for the relatively homogeneous school-age learners.

  • PDF

Numerical Simulation of the Characteristics of Electrons in Bar-plate DC Negative Corona Discharge Based on a Plasma Chemical Model

  • Liu, Kang-Lin;Liao, Rui-Jin;Zhao, Xue-Tong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1804-1814
    • /
    • 2015
  • In order to explore the characteristics of electrons in DC negative corona discharge, an improved plasma chemical model is presented for the simulation of bar-plate DC corona discharge in dry air. The model is based on plasma hydrodynamics and chemical models in which 12 species are considered. In addition, the photoionization and secondary electron emission effect are also incorporated within the model as well. Based on this model, electron mean energy distribution (EMED), electron density distribution (EDD), generation and dissipation rates of electron at 6 typical time points during a pulse are discussed emphatically. The obtained results show that, the maximum of electron mean energy (EME) appears in field ionization layer which moves towards the anode as time progresses, and its value decreases gradually. Within a pulse process, the electron density (ED) in cathode sheath almost keeps 0, and the maximum of ED appears in the outer layer of the cathode sheath. Among all reactions, R1 and R2 are regarded as the main process of electron proliferation, and R22 plays a dominant role in the dissipation process of electron. The obtained results will provide valuable insights to the physical mechanism of negative corona discharge in air.

Capacity Modulation of an Inverter Driven Heat Pump with Expansion Devices

  • Lee, Yong-Taek;Kim, Yong-Chan;Park, Youn-Cheol;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.60-68
    • /
    • 2000
  • An experimental study was peformed to investigate characteristics of an inverter driven heat pump system with a variation of compressor frequency and expansion device. The compressor frequency varied from 30Hz to 75Hz, and the performance of the system ap-plying three different expansion devices such as capillary tube, thermostatic expansion valve(TXV), and electronic expansion valve (EEV) was measured. The load conditions were altered by varying the temperatures of the secondary fluid entering condenser and evaporator with a constant flow rate. When the test condition was deviated from the standard value(rated value), TXV and EEV showed better performance than capillary tube due to optimal control of mass flow rate and superheat. In the present study, it was observed that the variable area expansion device had better performance than constant area expansion device in the inverter heat pump system due to active control of flow area with a change of com-pressor frequency and load conditions.

  • PDF

An Economic Analysis of a Secondary Waste Heat Recovery Geothermal Heating System (2단 가열식 지열시스템의 경제성 분석)

  • Shin, Jeong Soo;Kim, Sean Hay
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.249-258
    • /
    • 2017
  • This paper provides an economic analysis of a new geothermal heat pump system that reuses condenser waste heat from a Ground Source Heat Pump ($GSHP_{ch}$) to provide energy for a hot water Ground Source heat pump ($GSHP_{hw}$). After conducting feasibility tests using GLD and TRNSYS simulations, the proposed system was effectively installed and thoroughly tested. We observe that 1) the Coefficient of Performance (COP) of the $GSHP_{hw}$ and the $GSHP_{ch}$ during cooling mode improves by up to 62% and 7%, respectively; 2) the number of bore holes can be reduced by two; and 3) the hot water supply temperature of the $GSHP_{hw}$ increases by up to $60^{\circ}C$. We further conclude that 1) the reduction of two bore holes can save approximately ten million Won from the initial cost investment; and 2) the increased COP of the $GSHP_{hw}$ can save approximately one million Won in annual electricity costs.

Theoretical Study for Vehicle Applications of Electrically Heated Catalyst(EHC) (Electrically Heated Catalyst(EHC)의 실차 적용에 관한 이론적 연구)

  • 손건식;이용래;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.15-26
    • /
    • 1997
  • In this study, the theoretical investigation of the electrically heated catalyst(EHC) for vehicle application has been carried out using the thermal equivalence of EHC system and the data of vehicle tests to meet ultra low emission vehicle(ULEV) standard. To improve the efficiency of EHC system, it is necessary to understand relation between the power, the operating time and the conversion efficiency of EHC system. The relation was found with thermal equivalence of EHC system which considers the power supply to EHC, heat loss, chemical exothermic energy generated by oxidation reaction and net energy coming in via the exhaust gas. From this relation, the limits of needful power and operating time to meet the ULEV standard can be suggested, when the conversion efficiency of catalyst was known.

  • PDF

Design and Implementation of Multi-Sensor Interface System (다중 센서 인터페이스 시스템 설계 및 구현)

  • Mun, Myeong-Ju;Kim, Hyounkyoung
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.515-523
    • /
    • 2015
  • The air traffic control service in the domestic airports and approach control centers is provided using data from flight plan and a variety of surveillance sensors such as SSR, ADS-B and MLAT, etc. The physical connection methods and data types of the sensors are various, as so using these data directly may cause a lot of cost in development and maintenance of air traffic control equipment. As a method for solving such a problem, we propose a system that can convert the data from the heterogeneous sensors to the unified format which can be processed by the air traffic control devices. In this paper, the analysis results for the physical characteristics and data formats of the typical surveillance sensors are described. Also, the system design and the system implementation result for the multi-sensor interface system to interoperate the sensors are explained in detail.

Ducted Rocket Propulsion System Development Proposal (Ducted Rocket의 현황과 추진기관 개발방안)

  • Lee Jun-Ho;Choi Sung-Han;Hwang Jong-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.475-478
    • /
    • 2005
  • Ducted rocket produces thrust by 2 steps, primary incomplete combustion in the gas generator, and secondary complete combustion reaction in combustion chamber mixed by air taken through duct. the range of a rocket is determined by the weight of propellant, especially the weight of fuel. So ducted rocket has more efficiency and high terminal speed compared to traditional solid rocket motor. This propulsion system expected to be applied to various kinds of missile for anti-aircraft, anti-ship

  • PDF

Performance of Refrigerator Using R134a, R152a and R22/142b (R134a, R152a, R22/142b를 이용한 냉동기의 성능실험)

  • Chang, Y.S.;Shin, J.Y.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 1994
  • Experiments on the performance of refrigeration system using alternatives to R12 are carried out. The condenser and the evaporator are concentric-tube heat exchangers of counter-flow type and the compressor is driven by a variable speed motor. In this study, R134a, R152a, R22/142b(50 : 50 by mass) are adopted as alternatives to R12. Tests are performed by varying the inlet and outlet temperatures of secondary fluids of evaporator and condenser under the condition of constant compressor speed, degree of superheating and degree of subcooling. Results show that R134a has refrigeration capacity close to that of R12 and requires the greatest compressor power compared with that of others. And the system using R152a shows the best performance from the viewpoint of refrigeration capacity, compressor power and coefficient of performance. R22/142b is superior to R12 in the above points.

  • PDF

Characteristics and control of intermittent flow in water distribution systems due to restricted supply (상수도관망에서 제한급수에 따른 간헐적 흐름의 특성 및 제어)

  • Yang, Kangseung;Kim, Donghong;Jung, Kwansoo;Kim, Juhwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • The water distribution system should be invariably operated on continuous pattern for 24 hours a day. Occasionally, it is not practically possible to operate for 24 hours due to water shortage or financial constraints. Therefore an intermittent water supply is unavoidable in water shortage area and developing countries. But the intermittent water supply can introduce large pressure forces and rapid fluid accelerations into a water supply network. These disturbances may result in new pipe failure, leakage and secondary contamination. This paper proposed an improvement methodology to prevent the disturbances by intermittent water supply. For the study, the hydraulic variation of intermittent flow in water distribution system was measured and analyzed in the field by comparing with simulation of hydraulic model. Installations of control valves such as, pressure reducing and sustaining and air valves were employed for pressure and flow control. The effectiveness of the methods are presented by comparing hydraulic conditions before and after introducing the proposed solutions.