• Title/Summary/Keyword: Second-order reliability method

Search Result 252, Processing Time 0.027 seconds

A Study on the Optimized Design of Structures Considering Reliability Analysis (신뢰성을 고려한 구조물의 최적설계에 관한 연구)

  • Park, Hyun-Jung;Shin, Soo-Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.217-224
    • /
    • 2003
  • The objective of this paper is to suggest the technique of program to perform structural optimization design after reliability analysis to consider the uncertainties of structural reponses. AFOSM method is used for reliability analysis then, structural optimization design is developed for 10-bar truss and 3 span 10 stories planar frame model is subject to reliability indices and probability of failure by reliability analysis. SQP method is used for optimization design method, this method has many attractions. As a result of analyzing with having and not having constraints and uncertainty, the minimum weight of truss and planar frame increased respectively 20.92% and average 8.08%.

Enhancement of Computational Efficiency of Reliability Optimization Method by Approximate Evaluation of Sub-Optimization Problem (부 최적화 문제의 근사적인 계산을 통한 신뢰도 최적설계 방범의 효율개선)

  • Jeong, Do-Hyeon;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1597-1604
    • /
    • 2001
  • Alternative computational scheme is presented fur reliability based optimal design using a modified advanced first order second moment (AFOSH) method. Both design variables and design parameters are considered as random variables about their nominal values. Each probability constraint is transformed into a sub -optimization problem and then is resolved with the modified Hasofer- Lind-Rackwitz-Fiessler (HL-RF) method for computational efficiency and convergence. A method of design sensitivity analysis for probability constraint is presented and tested through simple examples. The suggested method is examined by solving several examples and the results are compared with those of other methods.

System Reliability Analysis of Midship Sections (선체 중앙 횡단면의 시스템 신뢰성해석)

  • Y.S. Yang;Y.S. Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.115-124
    • /
    • 1993
  • A structural system reliability analysis is studied for the safety assessment of midship section. Probabilistically dominant collapse modes are generated by Element Replacement Method and Incrimental Load Method. In order to avoid generating the same modes repeatedly, it is branched at final plastic hinge. Using first and second order bound methods, system failure probability of midship section is computed and compared with deterministic load factor method to show the usefulness of the proposed method.

  • PDF

Reliability-Based Service Life Estimation of Concrete in Marine Environment (신뢰성이론에 기반한 해양환경 콘크리트의 내구수명 평가)

  • Kim, Ki-Hyun;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.595-603
    • /
    • 2010
  • Monte-Carlo simulation technique is often used in order to predict service life of concrete structure subjected to chloride penetration in marine environment based on probability theory. Monte-Carlo simulation method, however, the method gives different results every time that the simulation is run. On the other hand, moment method, which is frequently used in reliability analysis, needs negligible computational cost compared with simulation technique and gives a constant result for the same problem. Thus, in this study, moment method was applied to the calculation of corrosion-initiation probability. For this purpose, computer programs to calculate failure probabilities are developed using first-order second moment (FOSM) and second-order second moment (SOSM) methods, respectively. From the analysis examples with the developed programs, SOSM was found to give a more accurate result than FOSM does. The sensitivity analysis has shown that the factor affecting the corrosion-initiation probability the most was the cover depth, and the corrosion-initiation probability was influenced more by its coefficient of variation than its mean value.

System Reliability Analysis of Rack Storage Facilities (물류보관 랙선반시설물의 시스템신뢰성 해석)

  • Ok, Seung-Yong;Kim, Dong-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.116-122
    • /
    • 2014
  • This study proposes a system reliability analysis of rack storage facilities subjected to forklift colliding events. The proposed system reliability analysis consists of two steps: the first step is to identify dominant failure modes that most contribute to the failure of the whole rack facilities, and the second step is to evaluate the system failure probability. In the first step, dominant failure modes are identified by using a simulation-based selective searching technique where the contribution of a failure mode to the system failure is roughly estimated based on the distance from the origin in the space of the random variables. In the second step, the multi-scale system reliability method is used to compute the system reliability where the first-order reliability method (FORM) is initially used to evaluate the component failure probability (failure probability of one member), and then the probabilities of the identified failure modes and their statistical dependence are evaluated, which is called as the lower-scale reliability analysis. Since the system failure probability is comprised of the probabilities of the failure modes, a higher-scale reliability analysis is performed again based on the results of the lower-scale analyses, and the system failure probability is finally evaluated. The illustrative example demonstrates the results of the system reliability analysis of the rack storage facilities subjected to forklift impact loadings. The numerical efficiency and accuracy of the approach are compared with the Monte Carlo simulations. The results show that the proposed two-step approach is able to provide accurate reliability assessment as well as significant saving of computational time. The results of the identified failure modes additionally let us know the most-critical members and their failure sequence under the complicated configuration of the member connections.

Failure Probability Assessment of Gas Pipelines Considering Wall-Thinning Phenomenon (감육현상을 고려한 가스배관의 파손확률 평가)

  • Lee Sang-Min;Yun Kang-Ok;Chang Yoon-Suk;Choi Jae-Boons;Kim Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.158-166
    • /
    • 2005
  • Pressurized gas pipeline is subject to harmful effects both of the surrounding environment and of the materials transmitted in them. In order to maintain the integrity, reliable assessment procedures including tincture mechanics analysis etc are required. Up to now, the integrity assessment has been performed using conventional deterministic approaches even though there are many uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for gas pipeline evaluation. The objectives of this paper are to estimate the failure probability of corroded pipeline in gas and oil plants and to propose limited operating conditions under different types of leadings. To do this, a probabilistic assessment program using reliability index and simulation techniques was developed and applied to evaluate failure probabilities of corroded API-5L-X52/X60 gas pipelines subjected to internal pressure, bending moment and combined loading. The evaluation results showed a promising applicability of the probabilistic integrity assessment program.

Reliability-Based Optimum Design for Tubular Frame Structures (골조 파이프 구조물의 최적신뢰성 설계)

  • 백점기
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.95-105
    • /
    • 1988
  • This paper describes the development of a reliability-based optimum design technique for such three dimensional tubular frames as off shore structures. The objective function is formulated for the structural weight. Constraints that probability of failure for the critical sections does not exceed the allowable probability of failure are set up. In the evaluation of the probability of failure, fatigue as well as buckling and plasticity failure are taken into account and the mean-value first-order second-moment method(MVFOSM) is applied for its calculation. In order to reduce the computing time required for the repeated structural analysis in the optimization process, reanalysis method is also applied. Application to two and three dimensional simple frame structures is performed. The influence of material properties, external forces, allowable failure probabilities and interaction between external forces on the optimum design is investigated.

  • PDF

Development of an Optimization Technique for Robust Design of Mechanical Structures (기계 구조의 강건 설계를 위한 최적화 기법의 개발)

  • Jeong, Do-Hyeon;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.215-224
    • /
    • 2000
  • In order to reduce the variation effects of uncertainties in the engineering environments, new robust optimization method, which considers the uncertainties in design process, is proposed. Both design variables and system parameters are considered as random variables about their nominal values. To ensure the robustness of performance function, a new objective is set to minimize the variance of that function. Constraint variations are handled by introducing probability constraints. Probability constraints are solved by the advanced first order second moment (AFOSM) method based on the reliability theory. The proposed robust optimization method has an advantage that the second derivatives of the constraints are not required. The suggested method is examined by solving three examples and the results are compared with those for deterministic case and those available in literature.

Engineering criticality analysis on an offshore structure using the first- and second-order reliability method

  • Kang, Beom-Jun;Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.577-588
    • /
    • 2016
  • Due to the uncertainties related to the flaw assessment parameters, such as flaw size, fracture toughness, loading spectrum and so on, the probability concept is preferred over deterministic one in flaw assessment. In this study, efforts have been made to develop the reliability based flaw assessment procedure which combines the flaw assessment procedure of BS7910 and first-and second-order reliability methods (FORM/SORM). Both crack length and depth of semi-elliptical surface crack at weld toe were handled as random variable whose probability distribution was defined as Gaussian with certain means and standard deviations. Then the limit state functions from static rupture and fatigue perspective were estimated using FORM and SORM in joint probability space of crack depth and length. The validity of predicted limit state functions were checked by comparing it with those obtained by Monte Carlo simulation. It was confirmed that the developed methodology worked perfectly in predicting the limit state functions without time-consuming Monte Carlo simulation.

Reliability Analysis of Three-Dimensional Temporary Shoring Structures Considering Bracing Member and Member Connection Condition (가새재 및 부재 연결 조건을 고려한 3차원 가설 동바리 구조물의 신뢰성 해석)

  • Ryu, Seon-Ho;Ok, Seung-Yong;Kim, Seung-Min
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.53-61
    • /
    • 2019
  • This study performs reliability analysis of three-dimensional temporary shoring structures with three different models. The first model represents a field model which does not have diagonal bracing members. The installation of bracing members is often neglected in the field for convenience. The second model corresponds to a design model which has the bracing members with the hinge connection of horizontal and bracing members at joints. The third model is similar to the second model but the hinge connection is replaced with partial rotational stiffness. The reliability analysis results revealed that the vertical members of the three models are safe enough in terms of axial force, but the vertical and horizontal members exhibit a big difference among the three models in terms of combination stress of axial force and bi-axial bending moments. The field model showed significant increase in failure probability for the horizontal member, and thus the results demonstrate that the bracing member should be installed necessarily for the safety of the temporary shoring structures.