• Title/Summary/Keyword: Second-order rate constant

Search Result 164, Processing Time 0.029 seconds

Effect of Solvent on Some Excited States Processes of Mg- and Zn-Phthalocyanines$^\dag$

  • Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.416-421
    • /
    • 1986
  • The solvent coordination effect on the excited state processes of Mg(II)- and Zn(II)-phthalocyanines has been described. The triplet state of these compounds decays with mixed first and second order kinetics or mainly second order kinetics depending on the solvents used. The first order component of the rate constants decrease along with the series, dimethylsulfoxide (5-coordinated), 1-chloronaphthalene (4-coordinated) and piperidine (6-coordinated), while the second order rate constant is dependent on the diffusion rate constant of the solvents. The excited state quenching by methylviologen or p-benzoquinone is discussed. And ion recombination rate constant is given.

Chemical Modification of Serratia marcescens Acetolactate Synthase with Cys, Trp, and Arg Modifying Reagents

  • Choi, Ho-Il;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.40-45
    • /
    • 1995
  • Acetolactate synthase purified from Serratia marcescens ATCC 25419 was rapidly inactivated by the thiol specific reagent p-chloromercuribenzoate (PCMB), the tryptophan specific reagent N-bromosuccinimide (NBS), and the arginine modifying reagent phenylglyoxal (PGO). Inactivation by PCMB was prevented by both ${\alpha}$-ketobutyrate and pyruvate, and the second order rate constant for the inactivation was $2480\;M^{-1}{\cdot}min^{-1}$. The reaction order with respect to PCMB was 0.94. The inactivation of the enzyme by NBS was also substantially reduced by both ${\alpha}$-ketobutyrate and pyruvate. The second order rate constant for inactivation by NBS was $15,000\;M^{-1}{\cdot}min^{-1}$, and the reaction order was 2.0. On the other hand, inactivation by PGO was partially prevented by ${\alpha}$-ketobutyrate, but not by pyruvate. The second order rate constant for the inactivation was $1480\;M^{-1}{\cdot}min^{-1}$ and the order of reaction with respect to PGO was 0.75. These results suggest that essential cysteine, tryptophan and arginine are located at or near the substrate binding site.

  • PDF

Modeling of an elastomer constitutive relation

  • Sung, Dan-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.1018-1021
    • /
    • 1988
  • This study is concerned with modeling an elastomer constitutive relation by utilizing the truncated Volterra series. Actual experimental data from the Instron Tester are obtained for combined input, i.e. constant strain rate followed by a constant strain input. These data are then estimated for step inputs and utilized for the truncated Volterra series models. One second order and one third order truncated Volterra series models have been employed to estimated the force-displacement relation which is one of the prominent properities to characterize the viscoelastic material. The third order Volterra series model has better results, compared with those of the second order Volterra series model.

  • PDF

Kinetics and Reaction Mechanism for Aminolysis of Benzyl 4-Pyridyl Carbonate in H2O: Effect of Modification of Nucleofuge from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism

  • Kang, Ji-Sun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2269-2273
    • /
    • 2012
  • Pseudo-first-order rate constants $k_{amine}$ have been measured spectrophotometrically for the reactions of benzyl 4-pyridyl carbonate 6 with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. The plots of $k_{amine}$ vs. [amine] curve upward, indicating that the reactions proceed through a stepwise mechanism with two intermediates, a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$. This contrasts to the report that the corresponding reactions of benzyl 2-pyridyl carbonate 5 proceed through a forced concerted pathway. The $k_{amine}$ values for the reactions of 6 have been dissected into the second-order rate constant $Kk_2$ and the thirdorder rate constant $Kk_3$. The Br${\o}$nsted-type plots are linear with ${\beta}_{nuc}=0.94$ and 1.18 for $Kk_2$ and $Kk_3$, respectively. The $Kk_2$ for the reaction of 6 is smaller than the second-order rate constant $k_N$ for the corresponding reaction of 5, although 4-pyridyloxide in 6 is less basic and a better nucleofuge than 2-pyridyloxide in 5.

A Comparison of Substrate Removal Kinetics of Anaerobic Reactor systems treating Palm Oil Mill Effluent (Palm Oil Mill Effluent 처리 시 Anaerobic Hybrid Reactor의 기질 제거 Kinetics 비교)

  • Oh, Dae-Yang;Shin, Chang-Ha;Kim, Tae-Hoon;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.971-979
    • /
    • 2011
  • Palm Oil Mill Effluent (POME) is the mixed organic wastewater generated from palm oil industry. In this study, kinetic analysis with treating POME in an anaerobic hybrid reactor (AHR) was performed. Therefore, the AHR was monitored for its performances with respect to the changes of COD concentrations and hydraulic retention time (HRT). Batch tests were performed to find out the substrate removal kinetics by granular sludge from POME. Modified Stover Kincannon, First-order, Monod, Grau second-order kinetic models were used to analyze the performance of reactor. The results from the batch test indicate that the substrate removal kinetics of granular sludge is corresponds to follow Monod's theory. However, Grau second-order model were the most appropriate models for the continuous test in the AHR. The second order kinetic constant, saturation value constant, maximum substrate removal rate, and first-order kinetic constant were 2.60/day, 41.905 g/L-day, 39.683 g/L-day, and 1.25/day respectively. And the most appropriate model was Grau second-order kinetic model comparing the model prediction values and measured COD concentrations of effluent, whereas modified Stover-Kincannon model showed the lowest correlation.

The Kinetics Study of Ozone with Sulfur Dioxide in the Gas Phase (기체 상태에서의 오존과 아황산가스의 반응연구)

  • Young Sik Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.111-118
    • /
    • 1991
  • The kinetic of the gas phase reactions of ozone(0.5 torr) with sulfur dioxide was studied. The SO2 reaction was conducted in the 7∼22 torr range at 90∼155$^{\circ}$C. The reaction rate was faster than the reaction rate of O$_3$ in the presence of CO$_2$ alone. The reaction of O$_3$ with SO$_2$ follows the rate law: -d(O$_3)/dt=k_0(SO_2)(M)(O_3)+2k _1(SO_2)(O_3$). The first term of this rate law arises from a third order molecular reaction predominating in the lower temperature range and gave a rate constant k$_0$ = (9.35 $\pm$ 8.6) ${\times}$ 10$^9$e$^{-(11.05{\pm}2.04)kcal/RT}(M^{-2}s^{-1}$). The second term of the above rate law derived from a second order thermal decomposition reaction which was the major part of the reaction and gave a rate constant k$_0 =(9.35{\pm}8.6){\times}10^9e^{-(11.05{\pm}2.04)kcal/RT}(M^{-2}s^{-1}$). The overall reaction proceeds with kinetics of complex order composed mainly of second order and third order components.

  • PDF

Chemical Modification of the Biodegradative Threonine Dehydratase from Serratia marcescens with Arginine and Lysine Modification Reagents

  • Choi, Byung-Bum;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.124-128
    • /
    • 1995
  • Biodegradative threonine dehydratase purified from Serratia marcescens ATCC 25419 was inactivated by the arginine specific modification reagent, phenylglyoxal (PGO) and the lysine modification reagent, pyridoxal 5'-phosphate (PLP). The inactivation by PGO was protected by L-threonine and L-serine. The second order rate constant for the inactivation of the enzyme by PGO was calculated to be 136 $M^{-1}min^{-1}$. The reaction order with respect to PGO was 0.83. The inactivation of the enzyme by PGO was reversed upon addition of excess hydroxylamine. The inactivation of the enzyme by PLP was protected by L-threonine, L-serine, and a-aminobutyrate. The second order rate constant for the inactivation of the enzyme by PLP was 157 $M^{-1}min^{-1}$ and the order of reaction with respect to PLP was 1.0. The inactivation of the enzyme by PLP was reversed upon addition of excess acetic anhydride. Other chemical modification reagents such as N-ethylmaleimide, 5,5'-dithiobis (2-nitrobenzoate), iodoacetamide, sodium azide, phenylmethyl sulfonylfluoride and diethylpyrocarbonate had no effect on the enzyme activity. These results suggest that essential arginine and lysine residues may be located at or near the active site.

  • PDF

Reduction Characteristics of Triclosan using Zero-valent Iron and Modified Zero-valent Iron (영가철 및 개질 영가철을 이용한 triclosan의 환원분해 특성)

  • Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.7
    • /
    • pp.859-868
    • /
    • 2017
  • In this study, the reductive dechlorination of triclosan using zero-valent iron (ZVI, $Fe^0$) and modified zero-valent iron (i.e., acid-washed iron (Aw/Fe) and palladium-coated iron (Pd/Fe)) was experimentally investigated, and the reduction characteristics were evaluated by analyzing the reaction kinetics. Triclosan could be reductively decomposed using zero-valent iron. The degradation rates of triclosan were about 50% and 67% when $Fe^0$ and Aw/Fe were used as reductants, respectively, after 8 h of reaction. For the Pd/Fe system, the degradation rate was about 57% after 1 h of reaction. Thus, Pd/Fe exhibited remarkable performance in the reductive degradation of triclosan. Several dechlorinated intermediates were predicted by GC-MS spectrum, and 2-phenoxyphenol was detected as the by-product of the decomposition reaction of triclosan, indicating that reductive dechlorination occurred continuously. As the reaction proceeded, the pH of the solution increased steadily; the pH increase for the Pd/Fe system was smaller than that for the $Fe^0$ and Aw/Fe system. Further, zero-order, first-order, and second-order kinetic models were used to analyze the reaction kinetics. The first-order kinetic model was found to be the best with good correlation for the $Fe^0$ and Aw/Fe system. However, for the Pd/Fe system, the experimental data were evaluated to be well fitted to the second-order kinetic model. The reaction rate constants (k) were in the order of Pd/Fe > Aw/Fe > $Fe^0$, with the rate constant of Pd/Fe being much higher than that of the other two reductants.

Kinetics Study of the Reaction of Bromine with Phenylhydrazine in Sulfuric Acid Media (페닐히드라진과 브롬의 반응메카니즘에 관한 연구)

  • Park Byoung Bin;Park Il H.;Kong Young Kun;Choi Q. Won
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.227-234
    • /
    • 1977
  • The reaction of phenylhydrazine with bromine in sulfuric acid solution has been studied kinetically. The pseudo-second-order rate constant is approximately inversely proportional to hydrogen-ion concentration when the concentration of sulfuric acid is lower than 1M. arom the study of the effect of potassium bromide concentration on the rate constant, it is concluded that both neutral bromine and tribromide ion participate in the reaction, the rate constants in 0.01M $H_2SO_4$ being $5{\times}10^5M^{-1},sec^{-1}\;and\;0. 7{\times}10^5M^{-1},sec^{-1}$, respectively at $20^{\circ}C$. The pseudo-second-order rate constant of 2.4-dinitrophenylhydrazine-bromine reaction is independent of hydrogen ion concentration. From the KBr addition experiment, the rate constants for $Br_2\;and\;Br_3^-$ were obtained as $1.2{\times}10^5M^{-1},sec^{-1}\;and\;2.0{\times}10^4M^{-1},sec^{-1}$, respectively.

  • PDF

과망간산을 이용한 지하수내 TCE 제거효과 평가

  • Yang Seung-Gwan;Go Seok-O
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.53-56
    • /
    • 2005
  • A Laboratory study was conducted to evaluate the kinetics of oxidation of trichloroethylene (TCE) in groundwater by potassium permanganate $(KMnO_4)$, Consumption of permanganate by TCE and aquifer materials was also evaluated to obtain an appropriate injection rate of $KMnO_4$. TCE degradation by $KMnO_4$ in the absence of aquifer material showed effective with pseudo-first order rate constant, $k_{obs}=1.8110^{-3}\;s^{-1}\;at\;KMnO_4=500mg/L$. TCE oxidation by $KMnO_4$ was found to be second order reaction and the rate constant, $k=0.65{\pm}0.08\;M^{-1}s^{-1}$, was independent of pH changes. $KMnO_4$ consumption rate by groundwater sampled from field site was not significant, indicating that groundwater containing negligible amount of dissolved organic matter does not have any influence on the $KMnO_4$ degradation. Meanwhile, aquifer materials from field site were actively reacted with permanganate, resulting in the significant consumption of $KMnO_4$. It might be attributed to the existence of metal oxides in aquifer materials, Based on the rate constants obtained from this study, appropriate injection rate of permanganate and TCE removal rate in groundwater could be estimated.

  • PDF