• Title/Summary/Keyword: Second-order analysis

Search Result 4,952, Processing Time 0.037 seconds

Higher order impact analysis of sandwich panels with functionally graded flexible cores

  • Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.389-415
    • /
    • 2014
  • This study deals with dynamic model of composite sandwich panels with functionally graded flexible cores under low velocity impacts of multiple large or small masses using a new improved higher order sandwich panel theory (IHSAPT). In-plane stresses were considered for the functionally graded core and face sheets. The formulation was based on the first order shear deformation theory for the composite face sheets and polynomial description of the displacement fields in the core that was based on the second Frostig's model. Fully dynamic effects of the functionally graded core and face-sheets were considered in this study. Impacts were assumed to occur simultaneously and normally over the top and/or bottom of the face-sheets with arbitrary different masses and initial velocities. The contact forces between the panel and impactors were treated as internal forces of the system. Nonlinear contact stiffness was linearized with a newly presented improved analytical method in this paper. The results were validated by comparing the analytical, numerical and experimental results published in the latest literature.

PCA vs. ICA for Face Recognition

  • Lee, Oyoung;Park, Hyeyoung;Park, Seung-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.873-876
    • /
    • 2000
  • The information-theoretic approach to face recognition is based on the compact coding where face images are decomposed into a small set of basis images. Most popular method for the compact coding may be the principal component analysis (PCA) which eigenface methods are based on. PCA based methods exploit only second-order statistical structure of the data, so higher- order statistical dependencies among pixels are not considered. Independent component analysis (ICA) is a signal processing technique whose goal is to express a set of random variables as linear combinations of statistically independent component variables. ICA exploits high-order statistical structure of the data that contains important information. In this paper we employ the ICA for the efficient feature extraction from face images and show that ICA outperforms the PCA in the task of face recognition. Experimental results using a simple nearest classifier and multi layer perceptron (MLP) are presented to illustrate the performance of the proposed method.

  • PDF

Nonionic Amphiphilic Surfactant Conjuncted Polyethyleneimine as a New and Highly Efficient Non-viral Gene Carrier

  • Yin, Dongfeng;Chu, Cang;Ding, Xueying;Gao, Jing;Zou, Hao;Gao, Shen
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • In order to enhance the gene delivery efficiency and decrease the cytotoxicity of polyplexes, we synthesized Solutol-g-PEI by conjugating polyethyleneimine (PEI) to Solutol (polyoxyethylene (10) stearate), and evaluated its efficiency as a possible nonviral gene carrier candidate. Structural analysis of synthesized polymer was performed by using $^1H$-NMR. Gel retardation assay, particle sizes and zeta potential measurement confirmed that the new gene carrier formed a compact complex with plasmid DNA. The complexes were smaller than 150 nm, which implicated its potential for intracellular delivery. It showed lower cytotoxicity in three different cell lines (Hela, MCF-7, and HepG2) than PEI 25 kDa. pGL3-lus was used as a reporter gene, and the transfection efficiency was in vitro measured in Hela cells. Solutol-g-PEI showed much higher transfection efficiency than unmodified PEI 25 kDa.

Convergence Study of the Multigrid Navier-Stokes Simulation: I. Upwind Schemes (다중 격자 Navier-Stokes 해석을 위한 수렴 특성 연구 : I. 상류 차분 기법)

  • Kim, Yoon-Sik;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.1-9
    • /
    • 2004
  • This study concentrates on the upwind schemes for convergence acceleration of the multigrid method for the Navier-Stokes equations. Comparative study of the upwind schemes in the Fourier space has been performed to identify why the second-order upwind scheme with enlarged stencil can be preconditioned better than the classical second-order upwind scheme. The full-coarsening multigrid method with implicit preconditioned multistage scheme has been implemented for verification of analysis. Numerical simulations on the inviscid and turbulent flows with the Spalart-Allmaras turbulent model have been performed. The results showed consistent trend with the analysis.

Development of 3-D Flow Analysis Code Using Unstructured Grid System (I) - Numerical Method - (비정렬격자계를 사용하는 3차원 유동해석코드 개발 (I) - 수치해석방법 -)

  • Kim, Jong-Tae;Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1049-1056
    • /
    • 2005
  • A conservative pressure-based finite-volume numerical method has been developed for computing flow and heat transfer by using an unstructured grid system. The method admits arbitrary convex polyhedra. Care is taken in the discretization and solution procedures to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are found by a novel second-order accurate spatial discretization. Momentum interpolation is used to prevent pressure checkerboarding and the SIMPLE algorithm is used for pressure-velocity coupling. The resulting set of coupled nonlinear algebraic equations is solved by employing a segregated approach, leading to a decoupled set of linear algebraic equations fer each dependent variable, with a sparse diagonally dominant coefficient matrix. These equations are solved by an iterative preconditioned conjugate gradient solver which retains the sparsity of the coefficient matrix, thus achieving a very efficient use of computer resources.

NONLINEAR ANALYSIS OF SELF-EXCITED VIBRATION IN WHEELED TRACTOR VEHICLE'S DRIVELINE

  • Li, X.H.;Zhang, J.W.;Zeng, C.C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.535-545
    • /
    • 2006
  • A nonlinear analysis of torsional self-excited vibration in the driveline system for wheeled towing tractors was presented, with a 2-DOF mathematical model. The vibration system was described as a second-order ordinary differential equation. An analytical approach was proposed to the solution of the second-order ODE. The mathematical neighborhood concept was used to construct the interior boundary and the exterior boundary. The ODE was proved to have a limit cycle by using $Poincar\'{e}-Bendixson$ Annulus Theorem when two inequalities were satisfied. Because the two inequalities are easily satisfied, the self-excited vibration is inevitable and even the initial slip rate is little. However, the amplitude will be almost zero when the third inequality is satisfied. Only in a few working modes of the towing tractor the third inequality is not satisfied. It is shown by experiments that the torsional self-excited vibration in the driveline of the vehicle is obvious.

Engineering criticality analysis on an offshore structure using the first- and second-order reliability method

  • Kang, Beom-Jun;Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.577-588
    • /
    • 2016
  • Due to the uncertainties related to the flaw assessment parameters, such as flaw size, fracture toughness, loading spectrum and so on, the probability concept is preferred over deterministic one in flaw assessment. In this study, efforts have been made to develop the reliability based flaw assessment procedure which combines the flaw assessment procedure of BS7910 and first-and second-order reliability methods (FORM/SORM). Both crack length and depth of semi-elliptical surface crack at weld toe were handled as random variable whose probability distribution was defined as Gaussian with certain means and standard deviations. Then the limit state functions from static rupture and fatigue perspective were estimated using FORM and SORM in joint probability space of crack depth and length. The validity of predicted limit state functions were checked by comparing it with those obtained by Monte Carlo simulation. It was confirmed that the developed methodology worked perfectly in predicting the limit state functions without time-consuming Monte Carlo simulation.

Free vibration analysis of rotating beams with random properties

  • Hosseini, S.A.A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.293-312
    • /
    • 2005
  • In this paper, free vibration of rotating beam with random properties is studied. The cross-sectional area, elasticity modulus, moment of inertia, shear modulus and density are modeled as random fields and the rotational speed as a random variable. To study uncertainty, stochastic finite element method based on second order perturbation method is applied. To discretize random fields, the three methods of midpoint, interpolation and local average are applied and compared. The effects of rotational speed, setting angle, random property variances, discretization scheme, number of elements, correlation of random fields, correlation function form and correlation length on "Coefficient of Variation" (C.O.V.) of first mode eigenvalue are investigated completely. To determine the significant random properties on the variation of first mode eigenvalue the sensitivity analysis is performed. The results are studied for both Timoshenko and Bernoulli-Euler rotating beam. It is shown that the C.O.V. of first mode eigenvalue of Timoshenko and Bernoulli-Euler rotating beams are approximately identical. Also, compared to uncorrelated random fields, the correlated case has larger C.O.V. value. Another important result is, where correlation length is small, the convergence rate is lower and more number of elements are necessary for convergence of final response.

A study on sex-role reflected in the illustrations of social studies textbooks in Korean elementary schools (사회교과서의 직업영역에 나타난 성역할 분석: 초등학교 사회교과서의 화보를 중심으로)

  • BYEON, Hyo-Jong;BAIK, Mi-Hwa;KANG, Hee-Jong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.4
    • /
    • pp.471-488
    • /
    • 2009
  • This study aims to analyze the illustrations of social studies textbooks in order to find both sex-stereotypes and changing trends of sex-stereotypes last 60 years. For the study, 56 textbooks of elementary social studies of grades 3 to 6 are collected from the first to seventh national curriculum. The illustrations of social studies textbooks are analyzed from two different perspectives. First, it analyzes the numbers of male and female appearances in the work place of the textbook illustrations. Second, it analyzes sex-stereotypes in the work place. Through the analysis, this study tried to find changing trends of sex-stereotypes last 60 years in the illustrations of social studies textbooks. The findings and suggestions are as follows. First, we need to make more female appearances in the illustrations in order to make female and male appearances balanced in the textbooks. Second, we need to make more female appearances in the work place, especially providing more female appearances in the illustrations of high-ranking jobs. Third, we need to present male and female characters more balanced in a variety of life situations, thereby contributing to the equal and just society to come in the near future.

Relation between total degradation of steel concrete bond and degree of corrosion of RC beams experimental and computational studies

  • Maurel, Olivier;Dekoster, Mickael;Buyle-Bodin, Francois
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • This paper presents a study on the effects of localized steel-concrete bond degradation on the flexural behaviour of RC beams. A finite element analysis is undertaken to complete the experimental analysis. The first part deals with an experimental study on beams where bond was removed by using plastic tube at different locations and for various lengths. The flexural behaviour was studied at global scale (load-deflection) and local scale (moment-curvature). The second part, a numerical study using a simplified special finite element (rust element) modelling the rust layer occurring between reinforcement and concrete with corrosion was conducted in order to find the relation between the degree of corrosion and the degradation of the steel-concrete bond. The computed value of the corrosion degree corresponding to the total degradation of bond has been used in a second time to model the tests, in order to evaluate the influence of the loss of bond, the steel cross section reduction, and the combination of both. The results enable to evaluate the influence of the different corrosion effects on the flexural behaviour, according to the length and the location of the corroded zone.