• Title/Summary/Keyword: Second order parameter

Search Result 381, Processing Time 0.12 seconds

Verification of Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE)

  • Khuwaileh, Bassam;Williams, Brian;Turinsky, Paul;Hartanto, Donny
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.968-976
    • /
    • 2019
  • This paper presents a number of verification case studies for a recently developed sensitivity/uncertainty code package. The code package, ROMUSE (Reduced Order Modeling based Uncertainty/Sensitivity Estimator) is an effort to provide an analysis tool to be used in conjunction with reactor core simulators, in particular the Virtual Environment for Reactor Applications (VERA) core simulator. ROMUSE has been written in C++ and is currently capable of performing various types of parameter perturbations and associated sensitivity analysis, uncertainty quantification, surrogate model construction and subspace analysis. The current version 2.0 has the capability to interface with the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) code, which gives ROMUSE access to the various algorithms implemented within DAKOTA, most importantly model calibration. The verification study is performed via two basic problems and two reactor physics models. The first problem is used to verify the ROMUSE single physics gradient-based range finding algorithm capability using an abstract quadratic model. The second problem is the Brusselator problem, which is a coupled problem representative of multi-physics problems. This problem is used to test the capability of constructing surrogates via ROMUSE-DAKOTA. Finally, light water reactor pin cell and sodium-cooled fast reactor fuel assembly problems are simulated via SCALE 6.1 to test ROMUSE capability for uncertainty quantification and sensitivity analysis purposes.

Study on the Optimization of Pulse GTAW Process for Diaphragm with Thin Thickness (극박 다이아프램의 펄스 GTAW 공정 최적화에 관한 연구)

  • Park, Hyoung-Jin;Hwang, In-Sung;Kang, Mun-Jin;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.26 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • This paper has aimed to prevent excessive heat input by controlling arc distribution and heat input capacity with pulse GTAW in order to improve weld quality in 0.08mm pressure gauge diaphragm and flange welding parts. A design of experiment was designed using Box-Behnken method to optimize a welding process. The pulse GTAW parameters such as pulse current, base current, pulse duty, frequency and welding speed were set to input variables while hydraulic pressure that represents welding characteristics in diaphragm and flange joint were set to output variables. Based on the test result, a second regression equation was obtained between input and output variables and turned out significant. Besides, an influence of parameters has been confirmed through response surface analysis using the second-order regression equation and optimum welding condition was obtained through a grid-search method. The optimum welding condition was set to pulse current 84.4(A), base current 29.6(A), pulse duty 58.8(%), frequency 10(%), and welding speed 596(mm/min). Then, decent bead shape was acquired with no excessive heat input under the $2.3kgf/cm^2$ of hydrostatic pressure.

Optimization of Gas Mixing-circulation Plasma Process using Design of Experiments (실험계획법을 이용한 가스 혼합-순환식 플라즈마 공정의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.359-368
    • /
    • 2014
  • The aim of our research was to apply experimental design methodology in the optimization of N, N-Dimethyl-4-nitrosoaniline (RNO, which is indictor of OH radical formation) degradation using gas mixing-circulation plasma process. The reaction was mathematically described as a function of four independent variables [voltage ($X_1$), gas flow rate ($X_2$), liquid flow rate ($X_3$) and time ($X_4$)] being modeled by the use of the central composite design (CCD). RNO removal efficiency was evaluated using a second-order polynomial multiple regression model. Analysis of variance (ANOVA) showed a high coefficient of determination ($R^2$) value of 0.9111, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the experimental data. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the RNO removal efficiency and independent variables in a coded unit: RNO removal efficiency (%) = $77.71+10.04X_1+10.72X_2+1.78X_3+17.66X_4+5.91X_1X_2+3.64X_2X_3-8.72X_2X_4-7.80X{_1}^2-6.49X{_2}^2-5.67X{_4}^2$. Maximum RNO removal efficiency was predicted and experimentally validated. The optimum voltage, air flow rate, liquid flow rate and time were obtained for the highest desirability at 117.99 V, 4.88 L/min, 6.27 L/min and 24.65 min, respectively. Under optimal value of process parameters, high removal(> 97 %) was obtained for RNO.

An Application of Minimum Support Stabilizer as a Model Constraint in Magnetotelluric 2D Inversion (최소모델영역 연산자를 모델제한조건으로 적용한 2차원 MT 역산)

  • Lee, Seong-Kon
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.834-844
    • /
    • 2009
  • Two-dimensional magnetotelluric (MT) inversion algorithm using minimum support (MS) stabilizer functional was implemented in this study to enhance the contrast of inverted images. For this implementation, this study derived a formula in discrete form for creeping model updates in the least-squares linearized inversion. A spatially varying regularization parameter determination algorithm, which is known as ACB (Active Constraint Balancing), was also adopted to stabilize the inversion process when using MS stabilizer as a model constraint. Inversion experiments for a simple isolated body model show well the feature of MS stabilizer in concentrating the anomalous body compared with the second-order derivative model constraint. This study also compared MS stabilizer and the second-order derivative model constraints for a model having multiple anomalous bodies to show the applicability of the algorithm into field data.

Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control

  • Yu, Yang;Royel, Sayed;Li, Jianchun;Li, Yancheng;Ha, Quang
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.943-966
    • /
    • 2016
  • Recently, magnetorheological elastomer (MRE) material and its devices have been developed and attracted a good deal of attention for their potentials in vibration control. Among them, a highly adaptive base isolator based on MRE was designed, fabricated and tested for real-time adaptive control of base isolated structures against a suite of earthquakes. To perfectly take advantage of this new device, an accurate and robust model should be built to characterize its nonlinearity and hysteresis for its application in structural control. This paper first proposes a novel hysteresis model, in which a nonlinear hyperbolic sine function spring is used to portray the strain stiffening phenomenon and a Voigt component is incorporated in parallel to describe the solid-material behaviours. Then the fruit fly optimization algorithm (FFOA) is employed for model parameter identification using testing data of shear force, displacement and velocity obtained from different loading conditions. The relationships between model parameters and applied current are also explored to obtain a current-dependent generalized model for the control application. Based on the proposed model of MRE base isolator, a second-order sliding mode controller is designed and applied to the device to provide a real-time feedback control of smart structures. The performance of the proposed technique is evaluated in simulation through utilizing a three-storey benchmark building model under four benchmark earthquake excitations. The results verify the effectiveness of the proposed current-dependent model and corresponding controller for semi-active control of MRE base isolator incorporated smart structures.

A Study of Temporal Characteristics From Multi-Dimensional Precipitation Model (다차원 강우모형의 시간적인 특성 연구)

  • Kim, Sangdan;Yoo, Chulsang;Kim, Joong-Hoon;Yoon, Yong Nam
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.783-791
    • /
    • 2000
  • A multidimensional representation for precipitation, given In the theory proposed by E. Waymire et al. (1984), is used for simulating rainfall in space and time. The model produces moving storms with realistic meso-scale meteorological features in time and space. The first- and second-order statistics derived from observed JX)int gauge data were used to estimate the model parameters based on the Nelder-Mead algorithm of optimization. Then twelve-year traces of rainfall intensities at fixed gage stations were generated at intervals of 1 hours. First- and second-order statistics are evaluated from the above series, which are used for estimating the parameters of one dimensional model of temporal rainfall at a point. As a result from the comparisons of one dimensional model parameters used observed and generated data from multidimensional model, we found that the multidimensional rainfall model generated visually realistic spatial patterns of rainfall as well as realistic temporal hyetographs of rainfall at a point. point.

  • PDF

Crossing Dynamics of Leader-guided Two Flocks (우두머리가 있는 두 생물무리의 가로지르기 동역학)

  • Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.37-43
    • /
    • 2010
  • In field, one can observe without difficulties that two flocks are intersected or combined with each other. For example, a fish flock in a stream separates into two part by obstacles (e.g. stone) and rejoins behind the obstacles. The dynamics of two flocks guided by their leader were studied in the situation where the flocks cross each other with a crossing angle, ${\theta}$, between their moving directions. Each leader is unaffected by its flock members whereas each member is influenced by its leader and other members. To understand the dynamics, I investigated the order parameter, ${\phi}$, defined by the absolute value of the average unit velocity of the flocks' members. When the two flocks were encountered, the first peak in ${\phi}$ was appeared due to the breaking of the flocks' momentum balance. When the flocks began to separate, the second peak in ${\phi}$ was observed. Subsequently, erratic peaks were emerged by some individuals that were delayed to rejoin their flock. The amplitude of the two peaks, $d_1$ (first) and $d_2$ (second), were measured. Interestingly, they exhibited a synchronized behavior for different ${\theta}$. This simulation model can be a useful tool to explore animal behavior and to develop multi-agent robot systems.

A Study on Design Parameters for Ready-made Ear Shell of Hearing Aids (보청기용 범용 이어쉘을 위한 설계 파라미터에 관한 연구)

  • Urtnasan, Erdenebayar;Jeon, Yu-Yong;Park, Gyu-Seok;Song, Young-Rok;Lee, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1055-1061
    • /
    • 2011
  • In this study, main parameters: aperture, first bend and second bend which express a structure of ear canal are extracted in order to modeling and manufacture the ready-made ear shells of hearing aids. The proposed parameter extraction method consists of 2 important algorithms, aperture detection and feature detection. In the aperture detection algorithm, aperture of 3-D scanned virtual ear impression and parameters relating to ear shell of hearing aid are determined. The feature detection algorithm detects first bend, second bend, and related parameters. Through these two algorithms, parameters for aperture, first bend, and second bend are extracted to model the ready-made ear shell of hearing aid. The values of these extracted parameters from 36 people's right ear impression are analyzed and measured statistically. As a result of the analysis, it has been found that it is possible to classify ready-made ear shell parameters by age and size. The ready-made ear shell parameters are classified 3-size for 20 years old and 2-size for 60 years olde. Using 3D rhino program, virtual ready-made ear shell is reconstructed by parameters of every type, and simulated to model it. A final product was produced by transferring simulation result with rapid prototyping system. The modeled ready-made ear shell is evaluated with the objective and subjective method. Objective method is the comparison volume ratio and overlapped volume ratio of ear impression from randomly chosen 18 people and ready-made ear shell. And subjective method is that the final product of ready-made ear shell is used by users and the satisfaction number drawn from well fitting and comfortable testing was evaluated. In the result of the evaluation, it has been found that volume ration is 70%, big and middle size ready-made ear shell products are possible, and the satisfaction number is high.

Development of Prediction Model and Parameter Optimization for Second-Generation Magnetic Abrasive Polishing of Magnesium Alloy (마그네슘 합금강의 제2세대 자기연마에서 표면거칠기 예측모델 개발)

  • Kim, Sang-Oh;Lee, Sung-Ho;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.401-407
    • /
    • 2011
  • The conventional method of magnetic abrasive polishing is not suitable for non-magnetic materials because such polishing is basically possible when magnetic force exists and the magnetic force in non-magnetic materials is very low. The installation of an electromagnet under the working area of a non-magnetic material, which is called second-generation magnetic abrasive polishing in this study, can enhance the magnetic force. Experimental evaluation and optimization of process parameters for polishing magnesium alloy steel was performed by adopting the design of experiments and the response surface method. The results indicated that the intensity of the magnetic force and spindle speed are significant parameters that affect the improvement of surface roughness. A prediction model for the surface roughness of the magnesium alloy steel is developed using the second-order response surface method.

Effect of System Parameters on Target Parameters in Extrusion Cooking of Corn Grit by Twin-Screw Extruder (옥분 압출가공시 이축압출성형기의 System Parameters에 따른 압출물의 특성변화)

  • Kim, Ji-Yong;Kim, Chong-Tai;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.88-92
    • /
    • 1991
  • To analyze the effects of the system parameters on the target parameters, which include the amount of water evaporation, water solubility index(WSI) and water absorption index(WAI), test trials of fractional factorial design of the three process variables at three levels were carried out for corn grit with a laboratory twin-screw extruder with three different screw configurations. The system parameters collected from the trials, such as extrusion temperature, specific mechanical energy input(SME) and mean residence time(RT), were showed the ranges of $129{\sim}182^{\circ}C$, $67{\sim}163\;kwh/ton$ and $12{\sim}34\;sec$, respectively. Within these ranges of the system parameters, the target parameters were able to be quantified by using multiple regression equations. The correlation of results with the system parameters blocked by the screw configuration as dependent variables, yield correlation coefficients above 0.90, and the correlation using the system parameters obtained from whole experiment system as the dependent variables yield correlation coefficients around 0.80. The functional relationship, which can be quantified by second order polynomial regression equation with only two system parameters within necessary degree of accuracy, can he graped in three dimensional surface response and contour diagrams.

  • PDF