DOI QR코드

DOI QR Code

Crossing Dynamics of Leader-guided Two Flocks

우두머리가 있는 두 생물무리의 가로지르기 동역학

  • 이상희 (국가수리과학연구소 융복합수리과학부)
  • Received : 2010.06.04
  • Accepted : 2010.09.07
  • Published : 2010.09.30

Abstract

In field, one can observe without difficulties that two flocks are intersected or combined with each other. For example, a fish flock in a stream separates into two part by obstacles (e.g. stone) and rejoins behind the obstacles. The dynamics of two flocks guided by their leader were studied in the situation where the flocks cross each other with a crossing angle, ${\theta}$, between their moving directions. Each leader is unaffected by its flock members whereas each member is influenced by its leader and other members. To understand the dynamics, I investigated the order parameter, ${\phi}$, defined by the absolute value of the average unit velocity of the flocks' members. When the two flocks were encountered, the first peak in ${\phi}$ was appeared due to the breaking of the flocks' momentum balance. When the flocks began to separate, the second peak in ${\phi}$ was observed. Subsequently, erratic peaks were emerged by some individuals that were delayed to rejoin their flock. The amplitude of the two peaks, $d_1$ (first) and $d_2$ (second), were measured. Interestingly, they exhibited a synchronized behavior for different ${\theta}$. This simulation model can be a useful tool to explore animal behavior and to develop multi-agent robot systems.

우리는 두 생물무리가 서로 가로지르거나 결합하는 현상을 주변에서 흔히 볼 수 있다. 예로, 하천의 물고기 무리가 운동하다 바위나 돌같은 장애물을 만나 두 무리로 나누어졌다가 장애물 뒤에서 다시 하나로 합쳐지는 현상이 있다. 우두머리를 가지는 두 생물 무리가 각도${\theta}$를 가지고 서로 충돌하면서 가로질러 지나갈 때의 동역학을 연구하였다. 두 무리의 각 우두머리 개체는 다른 개체에 의해 영향을 받지 않는다. 이에 비해 무리의 개체들은 우두머리의 운동방향을 쫓아 가도록 시뮬레이션 되었다. 이 두 무리의 가로지르기 동역학을 이해하기 위해서, 무리개체의 평균 단위속도의 합으로 정의되는 질서매개변수${\phi}$를 조사하였다. 두 무리가 서로 만나는 순간, 두 무리의 운동량 균형이 무너지면서 ${\phi}$값이 급격히 올라갔다. 그리고 두 무리가 서로 분리되어질 때, 두 번째로 ${\phi}$값이 피크를 보였다. 무리개체들은 서로 충돌하면서 그들의 우두머리 개체를 쫓아가는데 방해를 받게 되는데 이로 인해 두 번째 피크이후에 불규칙적인 작은 피크들이 관측되었다. 두 피크값, $d_1$ (첫번째) 그리고 $d_2$ (두번째), 은 서로 다른 충돌각도 ${\theta}$에 대해서 동기화 현상을 보였다. 이 시뮬레이션 모델은 생물행동을 연구하거나 다개체 로봇 시스템 개발에 유용하게 사용되어 질수 있다.

Keywords

References

  1. Cashing, D. H. and Harden-Jones, F. R., "Why do fish school?," Nature 218, pp. 918-920, 1968.
  2. Zheng, M., Kashimori, Y., Hoshino, O., Fujita, K., and Kambara, T., "Behavioral pattern (innate action) of individuals in fish schools generating efficient collective evasion from predation," Journal of theoretical biology, 235, pp. 153-167, 2005. https://doi.org/10.1016/j.jtbi.2004.12.025
  3. Niwa, H. S., "Newtonian dynamical approach to fish schooling," Journal of theoretical biology, 181, pp. 47-63, 1996. https://doi.org/10.1006/jtbi.1996.0114
  4. Lee, S.-H., Pak, H. K., and Chon, T.-S., "Dynamics of prey-flock escaping behavior in response to predator's attack," Journal of theoretical biology, 240, pp.250-259, 2006. https://doi.org/10.1016/j.jtbi.2005.09.009
  5. Lee, S.-H., "Predator's Attack-incuded Phase-like Transition in Prey Flock," Physics Letters A 357, pp. 270- 274, 2006. https://doi.org/10.1016/j.physleta.2006.04.065
  6. Lee, S.-H., and Chon, T.-S., "Is a predator's attack angle important to catch a prey?," Journal of the Korean Physical Society. 51, pp. 230-234, 2007. https://doi.org/10.3938/jkps.51.230
  7. Mogilner, A. and Edelstein-Keshet, L., "Spatio-angular order in populations of self-aligning objects: formation of oriented patches," Physica D 89, pp. 346-367, 1996. https://doi.org/10.1016/0167-2789(95)00207-3
  8. Morgan, D. S. and Schwartz, I. B., "Dynamic coordinated control laws in multiple agent models," Physics Letters A. 340, pp. 121-131, 2005. https://doi.org/10.1016/j.physleta.2005.03.074
  9. Aoki, I., "A simulation study of the schooling mechanism in fish," Japanese Society of Fisheries Science. 48, pp. 1081-1088, 1982. https://doi.org/10.2331/suisan.48.1081
  10. Huth, A. and Wissel, C., "The simulation of the movement of fish schools," Journal of theoretical biology, 156, pp. 365-385, 1992. https://doi.org/10.1016/S0022-5193(05)80681-2
  11. Leonard, N. E. and Fiorelli, E., "Bifurcations and symmetries of optimal solutions for distributed robotic systems," Proceedings of the 40th IEEE Conference on Decision and Control, pp. 2968-2973, 2001.
  12. Liu, Y., Passino, K. M., and Polycarpou, M. M., "Output agreement in high-dimensional multi-agent systems," IEEE Transactions on automatic control 48, pp. 76-95, 2003. https://doi.org/10.1109/TAC.2002.806657
  13. Jadbabaie, A., Lin, J., and Morse, A. S., "Leader-follower dynamics for unicycles," IEEE Transactions on automatic control 48, pp. 988-1001, 2003. https://doi.org/10.1109/TAC.2003.812781
  14. Wang, W. and Slotine, J. J. E., "On partial contraction analysis for coupled nonlinear oscillators," Biological Cybernetics 92, pp. 38-53, 2005. https://doi.org/10.1007/s00422-004-0527-x
  15. Axelsen, B. E., Anker-Nilssen, T., Fossum, P., Kvamme, C., and Nottestad, L., "Pretty patterns but a simple strategy: predator-prey interactions between juvenile herring and Atlantic puffins observed with multibeam sonar," Canadian journal of zoology 79, pp. 1586-1596, 2001. https://doi.org/10.1139/z01-113
  16. Helbing, D., Farkas, I., and Vicsek, T., "Simulating dynamical features of escape panic," Nature 407, pp. 487-490, 2000. https://doi.org/10.1038/35035023