• Title/Summary/Keyword: Seawater uranium

Search Result 14, Processing Time 0.024 seconds

Systems Analyses of Alternative Technologies for the Recovery of Seawater Uranium

  • Byers, Margaret Flicker;Schneider, Erich;Landsberger, Sheldon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.369-376
    • /
    • 2018
  • The ability to recover the nearly limitless supply of uranium contained within the world's oceans would provide supply security to uranium based fuel cycles. Therefore, in addition to U.S. national laboratories conducting R&D on a system capable of harvesting seawater uranium, a number of collaborative university partners have developed alternative technologies to complement the national laboratory scheme. This works summarizes the systems analysis of such novel uranium recovery technologies along with their potential impacts on seawater uranium recovery. While implementation of some recent developments can reduce the cost of seawater uranium by up to 30%, other researchers have sought to address a weakness while maintaining cost competitiveness.

INVESTIGATION OF ACTIVATED CARBON ADSORBENT ELECTRODE FOR ELECTROSORPTION-BASED URANIUM EXTRACTION FROM SEAWATER

  • ISMAIL, AZNAN FAZLI;YIM, MAN-SUNG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.579-587
    • /
    • 2015
  • To support the use of nuclear power as a sustainable electric energy generating technology, long-term supply of uranium is very important. The objective of this research is to investigate the use of new adsorbent material for cost effective uranium extraction from seawater. An activated carbon-based adsorbent material is developed and tested through an electrosorption technique in this research. Adsorption of uranium from seawater by activated carbon electrodes was investigated through electrosorption experiments up to 300 minutes by changing positive potentials from +0.2V to +0.8V (vs. Ag/AgCl). Uranium adsorption by the activated carbon electrode developed in this research reached up to 3.4 g-U/kg-adsorbent material, which is comparable with the performance of amidoxime-based adsorbent materials. Electrosorption of uranium ions from seawater was found to be most favorable at +0.4V (vs. Ag/AgCl). The cost of chemicals and materials in the present research was compared with that of the amidoxime-based approach as part of the engineering feasibility examination.

AN ENGINEERING SCALE STUDY ON RADIATION GRAFTING OF POLYMERIC ADSORBENTS FOR RECOVERY OF HEAVY METAL IONS FROM SEAWATER

  • Prasad, T.L.;Saxena, A.K.;Tewari, P.K.;Sathiyamoorthy, D.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1101-1108
    • /
    • 2009
  • The ocean contains around eighty elements of the periodic table and uranium is also one among them, with a uniform concentration of 3.3 ppb and a relative abundance factor of 23. With a large coastline, India has a large stake in exploiting the 4 billion tonnes of uranium locked in seawater. The development of radiation grafting techniques, which are useful in incorporating the required functional groups, has led to more efficient adsorbent preparations in various geometrical configurations. Separation based on a polymeric adsorbent is becoming an increasingly popular technique for the extraction of trace heavy metals from seawater. Radiation grafting has provided definite advantages over chemical grafting. Studies related to thermally bonded non woven porous polypropylene fiber sheet substrate characterization and parameters to incorporate specific groups such as acrylonitrile (AN) into polymer back bones have been investigated. The grafted polyacrylonitrile chains were chemically modified to convert acrylonitrile group into an amidoxime group, a chelating group responsible for heavy metal uptake from seawater/brine. The present work has been undertaken to concentrate heavy metal ions from lean solutions from constant potential sources only. A scheme was designed and developed for investigation of the recovery of heavy metal ions such as uranium and vanadium from seawater.

Toxicological Investigation of Radioactive Uranium in Seawater

  • Ly, Suw-Young;Bae, Jeong-Mi;Kim, Jin
    • Toxicological Research
    • /
    • v.28 no.1
    • /
    • pp.67-71
    • /
    • 2012
  • Trace uranium detection measurement was performed using DNA immobilized on a graphite pencil electrode(DGE). The developed probe was connected to the portable handheld voltammetric systems used for seawater analysis. The sensitive voltammogram was obtained within only 30 s accumulation time, and the anodic stripping working range was attained at 100~800 ${\mu}g/l$ U and 10~50 ${\mu}g/l$. The statistic relative standard deviation of 30.0 mg/l with the $15^{th}$ stripping was 0.2115. Here, toxicological and analytical application was performed in the seawater survey in a contaminated power plant controlling water. The results were found to be applicable for real-time toxicological assay for trace control.

Effective Uranyl Binding by a Dihydroxyazobenzene Derivative. Ionization of Uranium-Bound Water

  • 이관표;장보빈;서정훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.814-819
    • /
    • 1996
  • In search of simple host molecules for uranyl ion which form 1: 1-type complexes with high formation constants that can be used either in extraction of uranium from seawater or in catalysis of biologically important organic reactions, the uranophile activities of dihydroxyazobenzene derivative 1 were studied. Uranyl ion and 1 form a 1: 1-type complex with a very large formation constant. The formation constant was measured at pH 7-11.6 by competition experiments with carbonate ion. From the resulting pH dependence, ionization constants of the two aquo ligands coordinated to the uranium of the uranyl complex of 1 were calculated. The ionization constants were also measured by potentiometric titration of the uranyl complex of 1. Based on these results, the pKa values of the two aquo ligands were estimated as 7.1 and 11.0, respectively. At pH 7.5-9.5, therefore, the complex exists mostly as monohydroxo species. Under the conditions of seawater, 1 possesses greater affinity toward uranyl ion compared with other uranophiles such as carbonate ion, calixarene derivatives, or a macrocyclic octacarboxylate. In addition, complexation of 1 with uranyl ion is much faster than that of the calixarene or octacarboxylate uranophiles.

Metal Sequestering by a Poly(ethylenimine)-Sephadex G-25 Conjugate Containing 2,2'-Dihydroxyazobenzene

  • Gwan, Won Jong;Yu, Chang Eun;Jang, Won Seok;No, Yeong Seok;Seo, Jeong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.393-400
    • /
    • 2000
  • 2,2¢-Dihydroxyazobenzene (DHAB) was attached to poly(ethylenimine) (PEI) to obtain DHAB-PEI. Spectral titration revealed that uranyl, Fe(III), Cu(II), and Zn(II) ion form 1 : 1-type complexes with DHAB attached to PEI. Formation constants for the metal complexes formed by the DHAB moieties of DHAB-PEI were mea-sured by using various competing ligands. The results indicated thatthe concentrations of uranyl, Fe(III), and Cu(II) ions can be reduced to 10 -16 -10 -23 M at p 8 with DHAB-PEI when the concentration of the DHAB moiety is 1 residue M. By using cyanuric chloride as the coupling reagent, DHAB-PEI was immobilized on Sephadex G-25 resin to obtain DHAB-PEI-Seph. Binding of uranyl,Fe(III), Cu(II), and Zn(II) ion by DHAB-PEI-Seph was characterized by using competing ligands. A new method has been developed for characteriza-tion of metal sequestering ability of a chelating resin. Formation constants and metal-binding capacity of two sets of binding sites on the resin were estimated for each metal ion. DHAB-PI-Seph was applied to recovery of metals such as uranium,Fe, Cu, Zn, Pb, V, Mn, and W from seawater. The uranium recovery from seawaterby DHAB-PEI-Seph does not meet the criterion for economical feasibility partlydue to interference by Fe and Zn ions. The seawater used in the experiment was contaminated by Fe and Zn and, therefore, the efficiency of uranium extractionfrom seawater with DHAB-PEI-Seph could be improved if the experiment is carried out in a cleaner sea.

Diagnosis of Trace Toxic Uranium Ions in Organic Liver Cell

  • Ly, Suw Young;Pack, Eun Chul;Choi, Dal Woong
    • Toxicological Research
    • /
    • v.30 no.2
    • /
    • pp.117-120
    • /
    • 2014
  • Uranium is toxic and radioactive traces of it can be found in natural water and soils. High concentrations of it in biological systems cause genetic disorders and diseases. For the in vivo diagnosis, micro and nano range detection limits are required. Here, an electrochemical assay for trace toxic uranium was searched using stripping voltammetry. Renewable and simplified graphite pencils electrode (PE) was used in a three-electrode cell system. Seawater was used instead of an electrolyte solution. This setup can yield good results and the detection limit was attained to be at $10{\mu}gL^{-1}$. The developed skill can be applied to organic liver cell.

Studies on the Separation of Uranium from Seawater by Composite Fiber Adsorbents(2)(Characterization of Adsorption-Desorption) (복합재료 섬유흡착제를 이용한 해수로부터 우라늄 분리에 관한 연구(2)(흡-탈착 특성))

  • Hwang, Taek-Seong;Park, Jeong-Gi;Hong, Seong-Gwon;Sin, Hyeon-Taek;No, Yeong-Chang
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.761-767
    • /
    • 1996
  • The composite fiber adsorbents containing amidoxime group were prepared and separation properties of uranium ion from seawater were investigated. The amount of uranium adsorption was increased with an increase in adsorption time. When the mole ratio of monomer and comonomer, such as acrylonitrile (AN), tetraethyleneglycol dimethacrylate(TEGMA), and divinylbenzene (DVB), were 1 :0. 1 :0.003, this resin showed the maximum adsorption ability for uranium at a level of pH 8. The amount of uranium adsorption was also increased linearly to one hour with an increase in the content of adsorbent which was added in the composite fiber adsorbents(CFA). The maximum adsorption for uranium of CF A showed at $25^{\circ}C$. Hence, the adsorption ability of CF A for calcium and magnecium ions were increased gradually by the recycling of adsorption and disorption, the adsorption content of their on were 0.3, 0.9mmole/g-adsorbents, respectly. It also showed that the adsorption contents of Ca and \1g ions were much lower than them of uranium. The desorption of uranium on the CF A was carried out , bout 100% within 30min, and the desorption rate of various CF A were equalled.

  • PDF

The Preparation of Composite Fiber Adsorbents for Separation of Uranium from Seawater by Spinning(1) (방사 방법을 이용한 해수로 부터 우라늄 분리를 위한 복합재료 섬유흡착제의 제조(1))

  • Hwang, Taek-Seong;Hwang, Ui-Hwan;Park, Jeong-Gi
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.966-978
    • /
    • 1995
  • Amidoximated composite fiber adsorbents were prepared for separation of uranium from seawater and characterized by various instrumental techniques, such as IR spectroscopy, CHN elemetal analyzer and SEM. The swelling ratios and yields of the AN-TEGMA and AN-TEGMA-DVB copolymers were decreased with an increase in crosslinklng agents, such as DVB and TEGMA composition. The yield of 85-92% and 82-88% of AN-TEGMA and AN-TEGMA-DVB copolymers respectively were found. The porosity was also decreased with increase in crosslinking compositions, and it was found that the AN-TEGMA-DVB porosity copolymers were smaller than the value of AN-TEGMA copolymer. We investigated that the adsorbent with the composite fiber adsorbents were well dispersed on the surface of Its by SEM. The optimum contents of containing adsorbent in the copolymer was 40 weight percent. The capacity of uraniyl ion through the composite fiber adsorbent containing the amidoxime group was miximized a pH level of 8. Also, if was found that the synthesized composite fiber adsorbent was good material, due to a pH level of 8.3 of seawater, for separation of uraniyl ion from seawater.

  • PDF

Polyamidoxime functionalized with phosphate groups by plasma technique for effective U(VI) adsorption

  • Shao, Dadong;Wang, Xiaolin;Ren, Xuemei;Hu, Sheng;Wen, Jun;Tan, Zhaoyi;Xiong, Jie;Asiri, Abdullah M.;Marwani, Hadi M.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.380-387
    • /
    • 2018
  • Finding poly(amidoxime) (PAO) based adsorbent with better performance in U(VI) extraction from seawater is a hot research topic. By employing plasma treatment, the bi-functionalized adsorbents containing amidoxime and phosphate (labelled as $PO_4/PAO$) were successfully synthesized. The obtained $PO_4/PAO$ was characterized and applied for the potential extraction of U(VI) from aqueous solution. The results show that $-PO_4$ enhanced the hydrophilicity of PAO. $PO_4/PAO$ possesses good selective sorption ability for U(VI) and excellent reusability. The findings is helpful to understand optimizing performance of PAO based adsorbents for uranium extraction from seawater.