• Title/Summary/Keyword: Seawater propulsion

Search Result 13, Processing Time 0.024 seconds

Design of Air-Lifted Seawater Propulsion System (ALSP) for Ecoships' Auxiliary Propulsion 1

  • Lee, Jae-hyuk
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.15-20
    • /
    • 2021
  • We constructed an air-lifted seawater propulsion system for decreasing fuel consumption of the ships. The system has a form of pipes which can be easily installed on the sides of the ship. Seawater mixed with air, will rise along within the pipe, and will be discharged downward. If the directions of inlet / outlet of the pipe are designed properly, a propulsive energy can be obtained. We tested the system with a model ship in Jangsa port at Sokcho-city with a water depth of 2.5 meters. The system was supplied regulated air at 6 bars during the 3 tests. The model ship was moving forward at a rate of 0.18 meters per second. In case of large ships equipped zfrom clean energy.

Development of Small Performance Test Device for Helical-Type Magnetohydrodynamic (MHD) Seawater Propulsion Thruster (헬리컬형 자기유체역학(MHD) 해수 추진기 소형 성능시험장치 개발)

  • Chang, Doo-Hee;Jo, Jong Gab;Chang, Dae-Sik;Kim, Sun-Ho;Jin, Jeong-Tae;Ryu, Chang-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.46-54
    • /
    • 2022
  • A magnetohydrodynamic (MHD) seawater propulsion thruster has been proposed to reduce propeller noise, propeller pitting, and vessel vibration originated from the propeller cavitation. The MHD thruster was also focused to overcome the limitation of propulsion velocity for the special purpose of marine ships. The research trends and key technologies in the worldwide leading countries are reviewed for the development of MHD propulsion thrusters in Korea. A small performance test device was developed firstly with a conventional solenoid magnet of ≤0.6 Tesla and a helical-type cylindrical duct(inner diameter of 5 cm) of thruster. The artificial seawater was fabricated by a salt solution including a conductivity of 5~6 S/m. The measured flow velocity of artificial seawater in the test device was 0.03~0.42 m/s (0.06~0.84 Knot) with a magnetic field strength of 0.6 Tesla and the applied currents of 10~80 A including the change of anode materials. It was found that the flow direction of seawater was reversed by the directional change of applied current in the solenoid magnet.

Study on combustion characteristics of seawater-reactive solid propellant for underwater propulsion (수중추진을 위한 해수반응성 고체추진제의 연소특성에 관한 연구)

  • Park, Kilsu;Kim, Taegyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.128-130
    • /
    • 2017
  • $NaBH_4$ was added to improve the water reactivity of aluminum powder as a solid propellant for underwater propulsion. Aluminum powders showed different combustion characteristics depending on the amount of $NaBH_4$ added. When $NaBH_4$ was added, it was burned by reaction with water even at a temperature much lower than the boiling point. In this study, it was confirmed that $NaBH_4$ is an effective additive to accelerate the vapor reaction with Al powder.

  • PDF

Design and transient analysis of a compact and long-term-operable passive residual heat removal system

  • Wooseong Park;Yong Hwan Yoo;Kyung Jun Kang;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4335-4349
    • /
    • 2023
  • Nuclear marine propulsion has been emerging as a next generation carbon-free power source, for which proper passive residual heat removal systems (PRHRSs) are needed for long-term safety. In particular, the characteristics of unlimited operation time and compact design are crucial in maritime applications due to the difficulties of safety aids and limited space. Accordingly, a compact and long-term-operable PRHRS has been proposed with the key design concept of using both air cooling and seawater cooling in tandem. To confirm its feasibility, this study conducted system design and a transient analysis in an accident scenario. Design results indicate that seawater cooling can considerably reduce the overall system size, and thus the compact and long-term-operable PRHRS can be realized. Regarding the transient analysis, the Multi-dimensional Analysis of Reactor Safety (MARS-KS) code was used to analyze the system behavior under a station blackout condition. Results show that the proposed design can satisfy the design requirements with a sufficient margin: the coolant temperature reached the safe shutdown condition within 36 h, and the maximum cooling rate did not exceed 40 ℃/h. Lastly, it was assessed that both air cooling and seawater cooling are necessary for achieving long-term operation and compact design.

Effect of Orifice Length on Particle Distribution in Particle-laden Jet (입자 부상 제트에서 오리피스 길이가 입자 분포에 미치는 영향에 대한 연구)

  • Yoon, Jungsoo;Paik, Kyong-Yup;Khil, Taeock;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.9-15
    • /
    • 2012
  • As a propellant of a high speed underwater vehicle, the hydro-reactive solid metal particles using seawater as a oxidizer maximizes its specific impulse when the solid metal particles and the seawater are uniformly mixed in the combustion chamber. The purpose of this study is to investigate the effects of injector geometry on the particle distribution of similarity point of view. For the purpose of this similarity of the mean velocity and particle number density along the radial direction was measured by Particle Image Velocimetry(PIV).

The Performance Analysis of Direct Current Electromagnetic Propulsion in Seawater

  • Kong, Yeong-Kyung;Park, Tai-In;Kim, Yun-Sik;Noh, Chang-Joo
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.38-44
    • /
    • 1993
  • Electromagnetic seawater thrusters may be classified into four general categories : internal duct dc, external field dc, internal peristaltic ac, and external peristaltic ac. Internal duct dc thrusters offer the advantages of low magnetic field leakage, simple construction, and potentially high reliability. The most efficient internal duct configuration consists of converging inlet nozzle and a straight discharge duct. Ideal efficiency calculations based on the one-dimensional Bernoulli equation show that thrusters should be designed with large cross-sectional areas and operate at low discharge velocities. In practice, this may be accomplished by using multiple thruster ducts. Conductivity enhancement, high magnetic fields, and long electrodes will also improve efficiency.

  • PDF

Development of the Fresh Water Generator

  • Park, Jun-Seop
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.546-552
    • /
    • 1999
  • In order to obtain the highly effective thermal energy from jacket cooling water of propulsion diesel engines. a development of the Fresh Water Generator (FWG) with a capacity of 30 ton/day was implemented. Newly developed experimental devices and data acquisition system were used to evaluate the performance of the FWG. In this study experiments were performed for various driving pressures by varying the mass flowrate of cooling seawater with or without a heat source instead of jacket cooling water.

  • PDF

Supercritical CO2-cooled fast reactor and cold shutdown system for ship propulsion

  • Kwangho Ju;Jaehyun Ryu;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1022-1028
    • /
    • 2024
  • A neutronics study of a supercritical CO2-cooled fast reactor core for nuclear propulsion has been performed in this work. The thermal power of the reactor core is 30 MWth and a ceramic UO2 fuel can be used to achieve a 20-year lifetime without refueling. In order to make a compact core with inherent safety features, the drum-type reactivity control system and folding-type shutdown system are adopted. In addition, we suggest a cold shutdown system using gadolinium as a spectral shift absorber (SSA) against flooding. Although there is a penalty of U-235 enrichment for the core embedded with the cold shutdown system, it effectively mitigates the increment of reactivity at the flooding of seawater. In this study, the neutronics analyses have been performed by using the continuous energy Monte Carlo Serpent 2 code with the evaluated nuclear data file ENDF/B-VII.1 Library. The supercritical CO2-cooled fast reactor core is characterized in view of important safety parameters such as the reactivity worth of reactivity control systems, fuel temperature coefficient (FTC), coolant temperature coefficient (CTC), and coolant temperature-density coefficient (CTDC). We can say that the suggested core has inherent safety features and enough flexibility for load-following operation.

Development of a 25kW-Class PEM Fuel Cell System for the Propulsion of a Leisure Boat (선박 추진용 25kW급 고분자전해질 연료전지 시스템 개발)

  • Han, In-Su;Jeong, Jeehoon;Kho, Back-Kyun;Choi, Choeng Hoon;Yu, Sungju;Shin, Hyun Khil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.271-279
    • /
    • 2014
  • A 25kW-class polymer electrolyte membrane (PEM) fuel cell system has been developed for the propulsion of a leisure boat. The fuel cell system was designed to satisfy various performance requirements, such as resistance to shock, stability under rolling and pitching oscillations, and durability under salinity condition, for its marine applications. Then, the major components including a 30kW-class PEM fuel cell stack, a DC-DC converter, a seawater cooling system, secondary battery packs, and balance of plants were developed for the fuel cell system. The PEM fuel cell stack employs a unique design structure called an anodic cascade-type stack design in which the anodic cells are divided into several blocks to maximize the fuel utilization without hydrogen recirculation devices. The performance evaluation results showed that the stack generated a maximum power of 31.0kW while maintaining a higher fuel utilization of 99.5% and an electrical efficiency of 56.1%. Combining the 30-kW stack with other components, the 25kW-class fuel cell system boat was fabricated for a leisure. As a result of testing, the fuel cell system reached an electrical efficiency of 48.0% at the maximum power of 25.6kW with stable operability. In the near future, two PEM fuel cell systems will be installed in a 20-m long leisure boat to supply electrical power up to 50kW for propelling the boat and for powering the auxiliary equipments.

A Study of the High Efficiency Sea Water Cooling System for the Propulsion Diesel Engine of Warships (함정 추진디젤기관의 고효율 해수냉각시스템에 관한 연구)

  • Kang, Byoung-Soo;Lim, Young-Soo;Jo, Kwan-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.468-472
    • /
    • 2015
  • Recently, there has been increasing interest in the efficient use of energy due to policies related to the reduction of greenhouse gas. This paper suggests a highly efficient sea water cooling system for the load-dependent control of a seawater pump depending on the load, to improve energy efficiency of the warship. This study models the propulsion diesel engine and simulation reflecting the characteristics of the warship operation state that checked the performance of high efficiency sea water cooling system. The simulation results revealed the cooling system of high efficiency with energy savings of approximately 53% compared to the existing cooling systems. These results can be used to improve the performance of the cooling system of the warship propulsion diesel engine in the future.