• Title/Summary/Keyword: Seawater circulation

Search Result 74, Processing Time 0.03 seconds

Numerical Prediction of Tidal Current by Effects of Wind and Density Current in Estuaries of Yeong-il Bay (하구밀도류와 바람장이 영일만 해수유동에 미치는 영향)

  • Yoon, Han-Sam;Lee, In-Cheol;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.277-283
    • /
    • 2003
  • This paper constructed the 3D real-time numerical model for which predicts the water quality and movement characteristics of the inner bay, which consider the characteristics of the wind-driven current and density current in estuaries which generated by the river discharge from the Hyeong-san river and oceanic water of the Eastern sea. The constructed numerical model reappeared successfully the seawater circulation current of Yeong-il Bay, which used the input conditions of the real-time tidal current, river discharge and weather conditions at March of 2001 year. Also to observe the wind-driven current and density current in estuaries effected to the seawater circulation pattern of the inner bay, we investigated the analyzation for the each impact factors and the relationship with the water quality of Yeong-il bay

  • PDF

Stability on Preventive Structures of Shore Erosion with Natural Affinity (자연 친화형 해안 침식방지 구조물의 안정성)

  • Lee, Jong-Seok;Han, Jae-Myung
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.9
    • /
    • pp.212-219
    • /
    • 2007
  • This study were developed with the preventive structures of shore erosion using the seawater circulation system in wave dissipation block of the natural affinity. The shore protection structures were established to excellent by the hydraulic model experiment on reflectivity and stability and wave overtopping in comparison with existing other structures. These structures, in order to analyzes also as the shore protection and the erosion preventive, were examined with the field applications of performance and the capacity of prevention, respectively, from field construction of the pending positions. As the result, the structures were ensured with the applications and the efficiency as the shore protection structure of erosion preventive by certifying accumulated sediment deposits in the field measurement and monitoring.

MULTISENSOR SATELLITE MONITORING OF OIL POLLUTION IN NORTHEASTERN COASTAL ZONE OF THE BLACK SEA

  • Shcherbak, Svetlana;Lavrova, Olga;Mytyagina, Marina;Bocharova, Tatiana;Krovotyntsev, Vladimir;Ostrovskiy, Alexander
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.989-992
    • /
    • 2006
  • The new approach to the problem of oil spill detection consisting in combined use of all available quasiconcurrent satellite information (AVHRR NOAA, TOPEX/Poseidon, Jason-1, MODIS Terra/Aqua, QuikSCAT) is suggested. We present the results of the application of the proposed approach to the operational monitoring of seawater condition and pollution in the coastal zone of northeastern Black Sea conducted in 2006. This monitoring is based on daily receiving, processing and analysis of data different in nature (microwave radar images, optical and infrared data), resolution and surface coverage. These data allow us to retrieve information on seawater pollution, sea surface and air-sea boundary layer conditions, seawater temperature and suspended matter distributions, chlorophyll a concentration, mesoscale water dynamics, near-surface wind and surface wave fields. The focus is on coastal seawater circulation mechanisms and their impact on the evolution of pollutants.

  • PDF

Studies on Changes in the Hydrography and Circulation of the Deep East Sea (Japan Sea) in a Changing Climate: Status and Prospectus (기후변화에 따른 동해 심층 해수의 물리적 특성 및 순환 변화 연구 : 현황과 전망)

  • HOJUN LEE;SUNGHYUN NAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The East Sea, one of the regions where the most rapid warming is occurring, is known to have important implications for the response of the ocean to future climate changes because it not only reacts sensitively to climate change but also has a much shorter turnover time (hundreds of years) than the ocean (thousands of years). However, the processes underlying changes in seawater characteristics at the sea's deep and abyssal layers, and meridional overturning circulation have recently been examined only after international cooperative observation programs for the entire sea allowed in-situ data in a necessary resolution and accuracy along with recent improvement in numerical modeling. In this review, previous studies on the physical characteristics of seawater at deeper parts of the East Sea, and meridional overturning circulation are summarized to identify any remaining issues. The seawater below a depth of several hundreds of meters in the East Sea has been identified as the Japan Sea Proper Water (East Sea Proper Water) due to its homogeneous physical properties of a water temperature below 1℃ and practical salinity values ranging from 34.0 to 34.1. However, vertically high-resolution salinity and dissolved oxygen observations since the 1990s enabled us to separate the water into at least three different water masses (central water, CW; deep water, DW; bottom water, BW). Recent studies have shown that the physical characteristics and boundaries between the three water masses are not constant over time, but have significantly varied over the last few decades in association with time-varying water formation processes, such as convection processes (deep slope convection and open-ocean deep convection) that are linked to the re-circulation of the Tsushima Warm Current, ocean-atmosphere heat and freshwater exchanges, and sea-ice formation in the northern part of the East Sea. The CW, DW, and BW were found to be transported horizontally from the Japan Basin to the Ulleung Basin, from the Ulleung Basin to the Yamato Basin, and from the Yamato Basin to the Japan Basin, respectively, rotating counterclockwise with a shallow depth on the right of its path (consistent with the bottom topographic control of fluid in a rotating Earth). This horizontal deep circulation is a part of the sea's meridional overturning circulation that has undergone changes in the path and intensity. Yet, the linkages between upper and deeper circulation and between the horizontal and meridional overturning circulation are not well understood. Through this review, the remaining issues to be addressed in the future were identified. These issues included a connection between the changing properties of CW, DW, and BW, and their horizontal and overturning circulations; the linkage of deep and abyssal circulations to the upper circulation, including upper water transport from and into the Western Pacific Ocean; and processes underlying the temporal variability in the path and intensity of CW, DW, and BW.

Genotoxicity (DNA damage) on Blood Cells of Parrot Fish (Oplegnathus fasciatus) Exposed to Acidified Seawater Making of CO2 (이산화탄소로 산성화된 해수에 노출된 돌돔(Oplegnathus fasciatus) 혈구세포에 대한 유전독성(DNA 손상))

  • Choi, Tae Seob;Lee, Ji-Hye;Sung, Chan-Gyoung;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.483-492
    • /
    • 2014
  • DNA damage such as genotoxicity was identified with comet assay, which blood cell of a marine parrot fish (Oplegnathus fasciatus) was exposed to an acidified seawater, lowered pH gradient making of $CO_2$ gas. The gradient of pH were 8.22, 8.03, 7.81, 7.55 with control as HBSS solution with pH 7.4. DNA tail moment of fish blood cell was $0.548{\pm}0.071$ exposed seawater of pH 8.22 condition, on the other hand, DNA tail moment $1.601{\pm}0.197$ exposed acidified seawater of pH 7.55 lowest condition. The approximate difference with level of DNA damage was 2.9 times between highest and lowest of pH. DNA damage with decreasing pH was significantly increased with DNA tail moment on blood cell of marine fish (ANOVA, p < 0.001). Ocean acidification, especially inducing the leakage of sequestered $CO_2$ in geological structure is a consequence from the burning of fossil fuels, and long term effects on marine habitats and organisms are not fully investigated. The physiological effects on adult fish species are even less known. This result shown that the potential of dissolved $CO_2$ in seawater was revealed to induce the toxic effect on genotoxicity such as DNA breakage.

Deposition Characteristics of the Sandbar and Estimation of the Mass Transport Flux in the Nakdong Estuary (낙동강 하구역의 사주 퇴적특성과 물질수송플럭스 산정)

  • YOON RAN-SAM;LEE IN-CHEOL;Ryu CHEONG-RO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.131-137
    • /
    • 2004
  • This paper is intended as an investigation of the deposition characteristics and mass transport flux estimation in the Nakdong estuary. In order to understand the effects of the tidal current circulation which influenced to an estuary terrain change, the seawater circulation calculation by the use of 2D numerical model for the three cases of without riverflow, mean and flood riverflow quantity condition practiced and each sectional net-flux of water quantity between sandbars(so called, dung) estimated. It may be that an estuary terrain change due to the large scale construction and reclamation at the Nakdong estuary influence to the long-time deposition characteristics. by the revim for the old research, we know that the development of the local sandbars has been moved toward the east-side from the west-side estuary area after the construction of the Nakdong river dike, at present the strong-acted location is the Bakhap-dung of the front sea of Tadea. The seawater circulation pattern at this large scale area of tidal flat bring on a change due to the water quantity outflowing from the Nakdong river. Base on the calculated results for the section net-flux of water quantity, we see that the accumulating action very strong at the local sea around Jangjado, Bakhapdung and Tadae for the case of flood riverflow quantity condition, but at the local sea around Jinudo for the another cases. Consequently, it is emphasized that in the Nakdong estuary the main sensitive regions which influenced from the discharge of riverflow were the local sea around Jangjado, Bakhapdung, Tadae and Jinudo.

  • PDF

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments (3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성)

  • JIHA KIM;BYOUNG-JU CHOI;JAE-SUNG CHOI;HO KYUNG HA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.77-100
    • /
    • 2024
  • Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.

Analysis of energy-saving effects of recirculation aquaculture system using seawater source heat pumps and solar power generation (해수 열원 히트펌프와 태양광 발전을 이용한 순환여과식 양식장의 에너지 절감 효과 분석)

  • Jong-Hyeok RYU;Hyeon-Suk JEONG;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.194-206
    • /
    • 2024
  • This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.

Salinity Changes and Bottom Water Particle Exchange Simulations in Response to Sluice Gate Operations at Saemangeum Lake (새만금 배수갑문 운영에 따른 염분 변화와 저층수의 입자교환 모의)

  • Seonghwa Park;Jonggu Kim;Minsun Kwon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.562-575
    • /
    • 2023
  • In an effort to improve water quality, the South Korean government has implemented measures to increase seawater circulation in Saemangeum Lake. We analyzed the effect of increasing the frequency of seawater circulation based on salinity levels and bottom water exchange in the lake, using an environmental fluid dynamics code model. When the sluice gate opening and shutting frequency increased from once to twice per day, the internal water level of Saemangeum Lake increased by up to ~0.7 m. The salinity increased by 2.12 psu near the western breakwater and decreased by 1.18 psu near the freshwater inlet. We analyzed the extent of bottom water exchange using a particle tracing method and observed that the residual rate of particles shallower than 5 m in water depth decreased by 2.52% in Case 2 (opening and shutting twice per day) compared to Case 1 (opening and shutting once per day). This indicates that increasing the frequency of sluice gate opening and shutting would promote enhanced bottom water exchange. Consequently, the increased salinity and bottom water exchange associated with increased seawater circulation are expected to improve water quality in Saemangeum Lake.

Spatial and Temporal Occurrence of Edwardsiella tarda at Flounder Farms in Jeju (제주도 넙치 양어장의 Edwardsiella tarda균의 분포에 관한 연구)

  • Kim, Jong-Su;Rho, Sum;Heo, Moon-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.2
    • /
    • pp.173-181
    • /
    • 2001
  • To find the appearance period and distribution of Edwardsiella tarda which causes severe damage to flounder (Paralichthys olivaceus) farms in Jeju-do, the rearing seawater (inflow, rearing water, outflow) and internal organs of flounders from 5 flounder farms were examined from June, 1997 to May, 1998. The number of bacteria in seawater was counted by plating the seawater on DSSS (Double Strength Salmonella-Shigella) agar plates or by plating after cultivation of bacteria. Bacteria in internal organs were counted by plating series of dilution of homogenized organ. The results are summarized as follows. E. tarda was detected in inflow seawater of five flounder farms in July, September and November, 1997 and February, March, April of 1998. In the rearing water and outflow water, the bacterium was detected throughout the year and the number of bacteria was much higher in summer than any other seasons. A large number of E. tarda in the internal organs were detected at farm B where a track-shaped tank was used, which has the characteristics of low circulation rate and bad discharge of excrement and residuals. In contast, none of E. tarda was detected at farm A where high circulation rate and good discharge of organic materials were applied. A few number of E. tarda at farm E were detected at the same condition as the farm A. A large number of E. tarda was observed in liver and intestines among the internal organs, and the number was higher from June to September in summer.

  • PDF