• Title/Summary/Keyword: Seawater Mixing

Search Result 121, Processing Time 0.027 seconds

Experimental Hybridization between Some Marine Coenocytic Green Algae Using Protoplasms Extruded in vitro

  • Klochkova, Tatyana A.;Yoon, Kang-Sup;West, John A.;Kim, Gwang-Hoon
    • ALGAE
    • /
    • v.20 no.3
    • /
    • pp.239-249
    • /
    • 2005
  • Some marine coenocytic green algae could form protoplasts from the extruded protoplasm in seawater. The dissociated cell components of the coenocytic protoplasm could be reunited into live cells and, hence, the formation of new species by mixing protoplasms from different coenocytic cells has been predicted. Our results showed that an incompatibility barrier was present during protoplast formation in coenocytic algae to exclude foreign inorganic particles or alien cell components. No inorganic particles or alien cell components were incorporated into protoplast formed spontaneously in seawater. Even when the inorganic particles or alien cell and/or cell component were incorporated into protoplast in some experimental condition, they were expelled from the protoplast or degenerated within several days. A species-specific cytotoxicity was observed during protoplast hybridization between the protoplasms of Bryopsis spp. and Microdictyon umbilicatum. The cell sap of M. umbilicatum could destroy the cell components of Bryopsis spp., but had no effect on Chaetomorpha moniligera. Species C. moniligera and Bryopsis did not affect protoplast generation of either species. The wound-induced protoplast formation in vitro might have evolved in some coenocytic algae as a dispersal method, and the incompatibility barrier to alien particles or cell and/or cell component could serve as a protective mechanism for successful propagation.

Mixing of Freshwater with Seawater inside Boom and Skirt System (막 구조 내부의 담수와 염수의 혼합)

  • O, Yeong-Min;Jeong, Sin-Taek
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.3
    • /
    • pp.299-306
    • /
    • 2000
  • Korea IS one of countries to be predicted short of water in the 21st century. The government has been investigating various alternatives to resolve the problems including construction of reservoirs. Freshwater retention techniques using boom and skirt system is one of them. It is very difficult to intake water in the estuaries of south and west coast of Korea because a big tide penetrates into an upstream river. Thus, means or retaining and keeping separate freshwater from seawater could potentially be helpful in solving the water supply problems. In this study, the proposed means to achieve freshwater retention is by use of floating boom and skirt systems. The hydraulic viability of these systems in taking advantage of natural stratification tendencies between the fresh and seawaters has been investigated through hydraulic experiments. It is found that freshwater retention capacity depends on skirt length and the opening beneath the skirt. The choice of skirt length IS very important to optimize freshwater storage because longer skirt lengths cause faster mixing and shorter lengths retain less volume. Results show that the freshwater retention volume generally increases as the length of the skirt increases. However, they show that water storage might be insufficient if skirts were either too long or too short.

  • PDF

Zooplankton Community in the Front Zone of the East Sea (the Sea of Japan), Korea : 2. Relationship between Abundance Distribution and Seawater Temperature (동해 전선역 동물플랑크톤 군집 : 2. 수온과 분포의 관계)

  • PARK Chul;LEE Chang Rae;KIM Jeong Chang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.749-759
    • /
    • 1998
  • Distribution of zooplankton abundance was studied in the front zone in the East Sea in November, 1996, Averaged total abundance in the front zone was less than that in the nearby cold surface water areas but more than that in the nearby warm surface water areas. The number of taxa was the greatest in the upper layer of mixing. Abundance and the number of tun in the front zone were contributed by the cold water and the warm water, respectively. Inspite of the differences in sampling time (day vs night), the species composition and abundance distribution were similar at two sites within cold or warm water area, However, they were quite different at two sites in the front zone although the sampling time of the day was the same. from this, the history of mixing was believed to be the most important factor for the species composition and abundance distribution in the front zone. Zooplankton distribution in the study area was mainly controlled by the dominant cold water Copepod Species Metridia paoifica, the only taxon that showed significant diet vertical migration. Most other taxa showed no significant diel vortical migration, Seawater temperature also affected zooplankton distribution. Positive correlations in the warm area, weak negative correlations in the cold water area, and no significant correlation in the front zone were obtained in general between the seawater temperature and the abundances of the major taxa.

  • PDF

Spatio-temporal Variations of Marine Environments and Phytoplankton Community in the Gochang Coastal Waters (GCW) of Southern West Sea in Korea (서해 남부, 고창연안해역의 해양환경 및 식물플랑크톤 군집의 시·공간 변동특성)

  • Yoon, Yang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.477-493
    • /
    • 2020
  • This study conducted a seasonal survey to analyze the spatio-temporal variations of marine environments and phytoplankton community in Gochang Coastal Waters (GCW) from August 2016 to April 2017. In the results, the water temperature ranged from 2.1℃ to 34.5℃, showing a large seasonal variation, but the salinity changed from 31.14 psu to 32.64 psu. Therefore, the seasonal variations of water types in GCW were mainly determined by water temperature. The phytoplankton community consisted of 53 genera and 86 species, showing a relatively simple distribution. The phytoplankton cell density ranged from 2.2 to 689.2 cells mL-1, with an average of 577.2 cells mL-1, which was low in autumn and high in winter. The seasonal succession of phytoplankton dominant species was mainly diatoms during the whole year, Leptocylindrus danicus, Chaetoceros curvisetus, Skeletonema costatum-ls in summer, Paralia sulcata, Eucampia zodiacus in autumn, S. costatum-ls, Thalassiosira nordenskioeldii in winter, and S. costatum-ls, Asterionella glacialis in spring. In other words, the phytoplankton community showed high diversity in GCW throughout the year. According to the PCA, GCW were easily heated and cooled by radiant energy at lower depth, and the seasonal distributions of phytoplankton were determined by the supply of nutrients by re-fuelling of surface sediments due to the seawater mixing such as tidal mixing.

Analysis of the ejector for low-pressure evaporative desalination system using solar energy (태양에너지 이용 저압 증발식 해수 담수시스템 이젝터 CFD 해석)

  • Hwang, In-Seon;Joo, Hong-Jin;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.137-143
    • /
    • 2010
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube(throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. In the present study, the multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Two-dimensional geometry was considered with the quadrilateral-mashing scheme. The gas suction rate increases with increasing Motive flow circulating rate.

Synthesis of Lithium Manganese Oxide by Wet Mixing and its Removal Characteristic of Lithium Ion (습식혼합에 의한 리튬망간 산화물의 합성과 리튬이온 제거특성)

  • You, Hae-Na;Lee, Dong-Hwan;Lee, Min-Gyn
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.446-452
    • /
    • 2013
  • In this paper, the wet mixing method was introduced to prepare spinel lithium manganese oxide (LMO) with $Li_2CO_3$ and $MnCO_3$. The physical properties of the resulting lithium manganese oxide were characterized by the XRD and SEM. The adsorption properties of LMO for $Li^+$ were investigated by batch methods. The maximum adsorption capacity of lithium was calculated from Langmuir isotherm and found to be 27.25 mg/g. The LMO are found to have a remarkable lithium ion-sieve property with distribution coefficients ($K_d$) in the order of $Ca^{2+}$ < $K^+$ < $Na^+$ < $Mg^{2+}$ < $Li^+$, which is promising in the lithium extraction from seawater.

제주도 동부해안 한동리지역의 수문지질학적 연구

  • 김기표;윤정수;박원배
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.9-12
    • /
    • 2002
  • The purpose of this study is to understand the high saline water phenomenon of Handong-ri area in the eastern coast of Jeju Island, were investigate the tidal effect of groundwater level, variation of electric conductivity and temperature, geological logging on the monitoring wells, chemical water quality, and ratios of oxygen istope of groundwater and seawater Results in investigating variation of interface zone of freshwater and saline water represented that the hyaloclastites formed at below groundwater table is developing toward the coast; this area consisted of stratum of good permeability. Hyaloclastites is presumed the main path of the high salinity water There are a lot of movement by the tide at upper layer. Salinity of lower layer spreads to upper up step in proportion to tidal energy. Because of hydrogeological characteristics, Interface zone of freshwater and saline water is made, High salinity of groundwater occur in east coastal area of Jeju Island. Therefore, I think that high saline groundwater phenomenon is natural condition by simple mixing.

  • PDF

Fossil Saline Groundwater and Their Flushing Out At Gilsan Stream Catchment in the Western Coastal Area of Seocheon, Korea (서천 해안지역 길산천 소유역에서의 고염분 지하수와 씻김 현상)

  • Sang-Ho Moon;Yoon Yeol Yoon;Jin-Yong Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.671-687
    • /
    • 2022
  • It has been reported that about 47% of groundwater wells within 10 km from the coastline in the western/southern coastal areas of Korea were affected by seawater. It has been interpreted that the cause of groundwater salinization is seawater intrusion. The Gilsan stream in the Seocheon area was a tidal stream until the Geumgang estuary dam was constructed and operated. Therefore, it is likely that the Gilsan stream catchment was deposited with sediments containing high-saline formation water prior to the use of landfill farmland at this catchment area. The groundwater in this study area showed EC values ranging from 111 to 21,000 µS/cm, and the water quality types were diverse including Ca(or Na)-HCO3, Ca(or Na)-HCO3(Cl), Na-Cl(HCO3), Na-Cl types. It is believed that this diversity of water quality is due to the mixing of seawater and fresh groundwater generated by infiltration of precipitation and surface water through soil and weathered part. In this study, we discussed whether this water quality diversity and the presence of saline groundwater are due to present seawater intrusion or to remnant high-saline pore water in sediments during flushing out process. For this, rain water, surface water, seawater, and groundwater were compared regarding the water quality characteristics, tritium content, oxygen/hydrogen stable isotopic composition, and 87Sr/86Sr ratio. The oxygen/hydrogen stable isotopic compositions indicated that water composition of saline groundwaters with large EC values are composed of a mixture of those of fresh groundwater and surface water. Also, the young groundwater estimated by tritium content has generally higher NO3 content. All these characteristics showed that fresh groundwater and surface water have continued to affect the high-saline groundwater quality in the study area. In addition, considering the deviation pattern in the diagrams of Na/Cl ratio versus Cl content and SAR (sodium adsorption ratio) versus Cl content, in which two end members of fresh surface-ground water and seawater are assumed, it is interpreted that the groundwater in the study area is not experiencing present seawater intrusion, but flush out and retreating from ancient saline formation water.

Engineering Performance and Applicability of Environmental Friendly Porous Concrete for a Marine Ranch Using Steel Industry By-products (철강산업 부산물을 활용한 해양목장 조성용 친환경 다공질 콘크리트의 공학적 성능 및 적용성)

  • Lee, Byung-Jae;Jang, Young-Il;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2013
  • The steel industry, a representative industry that significantly consumes raw materials and energy, produces steel as well as a large amount of by-product steel slag through the production process. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of marine ranches were evaluated in this study. The test results for percentage of voids per mixing ratio revealed that the margin of error for all conditions was within 2.5%. The compressive strength test results showed that the most outstanding environmental friendly porous concrete can be manufactured when mixing 30% slag aggregate and 10% specially treated granular fertilizer for the optimum volume fraction. As concrete for marine applications, the best seawater resistance was obtained with mixing conditions for high compression strength. An assessment of the ability to provide a marine life habitat foundation of environmentally friendly porous concrete showed that a greater percentage of voids facilitated implantation and inhabitation of marine life, and the mixing of specially treated granular fertilizer led to active initial implantation and activation of inhabitation. The evaluation of harmfulness to marine life depending on the mixture of slag aggregate and specially treated granular fertilizer revealed that the stability of fish is secured.

Hydrogeochemical and geostatistical study of shallow alluvial groundwater in the Youngdeok area

  • Kim, Nam-Jin;Yun, Seong-Taek;Kwon, Man-Jae;Kim, Hyoung-Soo;Kim, Chang-Hoon;Koh, Yong-Kwon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.232-236
    • /
    • 2000
  • Multi-regression statistical analyses were applied for the water quality data of shallow alluvial ground water (n = 47) collected from the Youngdeok area, in order to quantitatively generalize the natural (non-anthropogenic) causes of regional water quality variation. Seven samples having the high contamination index ( $C_{a}$ > 3) reflect the striong effects by anthropogenic activity. Most of the alluvial groundwaters have acquired their quality primarily due to the dissolution of carbonate minerals. The results of multi-regression analysis show that chlorine is mainly derived from seawater effect. Sulfur isotopic compositions of dissolved sulfur and the S $O_4$/Cl ratio also enable us to discriminate the samples (n = 18) which are affected by atmospheric input of marine aerosol (sea-spray) and also by mixing between freshwater and seawater. Hydrogen and oxygen isotope data of the samples collected lie close to the local meteoric water line obtained from nearby Pohang city but has lower slope (5.45) on the $\delta$D-$^{18}$ O plot, indicating that alluvial groundwater was recharged from infiltrated meteoric water which has undergone some degree of kinetic evaporation. The estimated initial isotopic composition of the recharged water ($\delta$D = -74.8$^{0}$ /$_{00}$, $\delta$$^{18}$ O = -10.8$^{[-1000]}$ /$_{[-1000]}$ ) suggests that the alluvial ground water recharge largely occurs during summer storm events.s.s.

  • PDF