• Title/Summary/Keyword: Seat design

Search Result 466, Processing Time 0.025 seconds

Optimized Design of the Head restraint according the regional seat safety assessment (국가별 좌석 안전성 평가 방법에 따른 머리지지대 최적화 설계)

  • Yoo, Hyukjin;Yim, Jonghyun;Yoon, Ilsung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.45-50
    • /
    • 2013
  • The whiplash Injuries due to rear collision occur frequently. As result, in many countries, seat performance is being assessed and developed to improve head whiplash injury in rear collision of passenger car. This study compares whiplash assessment methods in each country. Using the DFSS(Design for Six Sigma) method, the correlation between influence parameters of head restraints and whiplash injury criteria is analyzed. Four control factors are used in this study. And total 11 whiplash injury criteria from NCAP(New Car Assessment Program) of Korea, Europe, China and IIHS(Insurance Institute for Highway Safety) of USA are used for output response. By the experimental design, L9 orthogonal coordinate system is configured and is tested by sled test equipment, twice. By using average assay value and ANOVA, the correlation between control factors and injury criteria has been comprehended. Optimization design of head restraint according the regional seat safety assessment was derived through the correlation.

A Systematic Approach to Accident Scenario Analysis: Child Safety Seat Case Study (체계적 사고 시나리오 분석기법을 이용한 유아용 안전의자 사례연구)

  • Byun, Seong-Nam;Lee, Dong-Hoon
    • IE interfaces
    • /
    • v.15 no.2
    • /
    • pp.114-125
    • /
    • 2002
  • The objective of this paper is to describe a systematic accident scenario analysis method(SASA) adept at creating accident scenarios for the design of safer products. This approach was inspired by the Quality Function Deployment(QFD) method, which is conventionally used in quality management. In this study, the QFD provides a formal and systematic scheme to devise accident scenarios while maintaining objectivity. SASA consists of three key stages to be broken down into a series of consecutive steps:(1) developing an accident analysis tableau,(2) devising the accident scenarios using the accident analysis tableau,(3) performing a feasibility test, a clustering process and a patterning process, and finally(4) performing quantitative evaluation of each accident scenario. The SASA was applied to a case study of child safety seats. The accident analysis tableau devised 2828(maximum) accident scenarios from all possible relationships between the hazard factors and situation characteristics. Among them, 270 scenarios were devised through the feasibility test and the clustering process. The patterning process reduced them to 29 patterns representative of all accident scenarios. Based on an intensive analysis of the accident patterns, design guidelines for a safer child safety seat were recommended. The implications of the study on the child safety seat case were then discussed.

Development of the Compound Die Forming Technology United between Semi-Progressive and Transfer Die (세미 프로그레시브 금형과 트랜스퍼 금형기술을 융합한 복합 자동화 금형 제조기술에 관한 연구)

  • Park, Dong-Hwan;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.126-133
    • /
    • 2015
  • To enhance the productivity and quality of the compound process of progressive dies and transfer dies, the semi-progressive method is applied in the material supply step to produce blanks, and then the transfer method is applied. Parts are transferred among processes by means of the finger and transfer bar in the transfer die, and the final seat cushion panel is produced. The main challenge in the current study is how to deform a seat cushion panel while meeting the design specifications without any defects. In order to obtain this technology, a sheet metal-forming simulation and die forming of the seat cushion panel were adopted; as a result, a compound die-forming technology for the automotive seat cushion panel, combining both semi-progressive die and transfer die for continuous production, was successfully developed.

Development of Vibroacoustic Stimulation Seat for a Movie Theater Chair (영화관 의자용 음향진동자극 시트의 개발)

  • Moon, Deok-Hong
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.42-49
    • /
    • 2013
  • The global movie industry is continuing rapid growth through application of the latest technology. 3D movies are being produced and shown for a more effective viewing experience. Special chairs for audiences are being experimentally manufactured and installed for the greatest viewing effect. This special chair has a structure that applies vibrating stimuli to specific parts of the body by attaching vibration transducers to theater chairs and synchronizing it with each scene of the movie. In a previous study, it has been confirmed that we can analyze the vibration transfer characteristics of sponge seats through the application of an experimental modal analysis method and obtain design variables easily. In this paper, we examine the major design parameters needed in the development of a foaming sponge seat in which auxiliary springs are inserted to improve the vibration transfer effect of a chair seat. Through analyzing several prototypes by applying experimentation as well as the experimental modal analysis method, it was confirmed that the effect of vibration transfer can be improved through the use of an auxiliary member.

Optimization Design on the Sealing Surface Profiles of Contacting Seal Units (접촉식 시일장치의 밀봉 접촉면 형상에 대한 최적화 설계연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.761-766
    • /
    • 2011
  • In this study, the optimized design profiles between a seal ring and a seal seat of contacting seal units has been proposed based on the FEM computed results. The maximum temperatures, the thermal distortions in axial and radial directions, and maximum contact normal stresses between a seal ring and a seal seat have been analyzed for various contact sealing profiles. The FEM computed results present that the contact area between seal rings and seal seats is very important for a good tribological performance such as low friction heating, low wear, high contact normal stress in a primary sealing components. The seal surface model III in which has a small sealing contact area shows low dilatation of primary sealing components, and high contact stress between a seal ring and a seal seat. This model with small contact surface of a seal ring produces high friction heating and contact stress. But the model III produces very small deformations of contacting sealing surface because of high convection heat transfer by cooling water circulation around the seal ring surface. Thus, the analysis results recommend a short width of a primary sealing unit rather than a big width of contact surfaces of contacting seal units for reducing a leakage and axial deformation of primary seal components.

The Development of Textile Pattern Designs for Car Seats Using Patterns Expressed on Nineteenth-century Blue and White Porcelain (19세기 청화백자에 표현된 문양을 활용한 자동차 시트 직물 패턴디자인 개발)

  • Jung, Jin-Soun
    • Fashion & Textile Research Journal
    • /
    • v.24 no.4
    • /
    • pp.372-385
    • /
    • 2022
  • In this study, the patterns expressed on nineteenth-century blue and white porcelain among Joseon white porcelain were selected as the material for the development of the car seat fabric design. It was intended to be applied to car seat design by incorporating Korea's own traditional patterns to fit modern sensibility. First, seven pieces of nineteenth-century blue and white porcelain were selected through the literature, and motifs were produced using adobe illustrator, a computer graphic program. Seven car seat fabric designs were developed according to the construction method and development method of the produced motif. Work 1 was designed to elicit a soft and feminine atmosphere using the peony pattern shown in Table 1-1. Work 2 aimed to express a luxurious atmosphere using the image of the mountain expressed in Table 1-2 as a design material. Works 3 was designed by freely arranging the letters of luck expressed in Table 1-3 to form a free and dynamic image. Work 4 was intended to express a stable and rhythmic atmosphere by horizontally arranging the images of the gently curved wings, tail, and rhythmical tail feathers of the phoenix expressed in Table 1-4. Work 5 was designed in a vertical arrangement using the patterns and silhouettes of the tiger's back expressed in Table 1-5. Work 6 was designed using the wave pattern expressed in Table 1-6 to replicate the rhythmic atmosphere. Work 7 was designed using the images of rocks, waves, and the sun in Table 1-7 to express a calm and antique atmosphere.

CHARACTERISTIC OF BUTTERFLY VALVE FLOW WITH DIFFERENT DESIGN FACTORS (설계인자 변경에 따른 버터플라이 밸브 유동 특성에 관한 연구)

  • Lee, J.W.;Choi, H.K.;Yoo, G.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.170-176
    • /
    • 2009
  • Flow control butterfly valve(FCBV) is known to have difficulty in controlling flow rate along valve opening due to its high flow rate. In low opening condition, the butterfly valve also has some shortcomings such as noise, vibration and erosion which are mostly caused by cavitation effects. Therefore, the FCBV requires proper remedies to reduce cavitation effects and to improve flow control performance. Numerical analysis is applied to FCBV flow to find effects of design factors such as seat diameter and valve opening rate. Cases with 3 different sizes of seat diameter and various valve opening rate are selected for the numerical analysis. From the analysis results, it is found that the FCBV with small seat diameter shows better pressure loss performance and reduced cavitation effects.

  • PDF

CHARACTERISTIC OF BUTTERFLY VALVE FLOW WITH DIFFERENT DESIGN FACTORS (설계인자 변경에 따른 버터플라이 밸브 유동 특성에 관한 연구)

  • Lee, J.W.;Choi, H.K.;Yoo, G.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.64-70
    • /
    • 2010
  • Flow control butterfly valve(FCBV) is known to have difficulty in controlling flow rate along valve opening due to its high flow rate. In low opening condition, the butterfly valve also has some shortcomings such as noise, vibration and erosion which are mostly caused by cavitation effects. Therefore, the FCBV requires proper remedies to reduce cavitation effects and to improve flow control performance. Numerical analysis is applied to FCBV flow to find effects of design factors such as seat diameter and valve opening rate. Cases with 3 different sizes of seat diameter and various valve opening rate are selected for the numerical analysis. From the analysis results, it is found that the FCBV with small seat diameter shows better pressure loss performance and reduced cavitation effects.

Design of Butterfly Valve Disk to Minimize Interference at Opening and Closing (개폐 시 최소 간섭을 갖는 버터플라이 밸브 디스크의 설계)

  • Choi Young;Boo Kwangsuk;Yeo Hong-Tae;Hur Kwando;Kim Hokwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.140-145
    • /
    • 2004
  • In this study, the design and analysis of a butterfly valve disk was performed to minimize the rubbing between the disk and the seat at opening and closing. The butterfly valve has double eccentric structure and the contact surface between the disk and the seat is a conical surface. At the instant of opening and closing the valve by the rotation of disk, the positions of zero contact point are changed. Also, if the cone surface is cut in the perpendicular direction to the rotation axis of the valve, the contour of cutting section is hyperbolic. Therefore minimum distance between the origin of the eccentric axis and the hyperbolic curve goes to the position of zero contact point. In order to consider the interferences between the disk and the seat, the thermal-structure coupled field analysis was performed by ANSYS.

Dynamic Characteristics Analysis of A Manually-Controlled Damper for Driver's Seat of Commercial Vehicles (상용차 운전석의 수동식 가변댐퍼에 대한 동적특성 해석)

  • 박재우;백운경;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.518-523
    • /
    • 1995
  • To improve the set comfort of commercial vehicles in various road conditions, it is necessary to design a seat shock absorber which can avoid the vibration zone imposing the discomfort feeling and fatigue on drivers. Through the vibration and dynamic analysis, a shock absorber that has 4 steps of damping ability is developed. Dynamic characteristics analysis of the seat damper is performed considering each valve and oil path for the design purpose.

  • PDF