• Title/Summary/Keyword: Seat Vibration

Search Result 221, Processing Time 0.025 seconds

A Study on the Vibration Characteristics of a Head-Feeding Combine by Spectral Analysis (스펙트럼 해석에 의한 자탈형 콤바인의 진동 특성 고찰)

  • ;井上英二
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 2001
  • Experiments under the stationary and harvesting condition, were performed in order to investigate the vibration characteristics of a head-feeding combine. 6 degrees of freedom components of acceleration at the location of the center of the gravity, and 3 degrees of freedom components of acceleration at the location of the operator seat were measured independently. The vibration characteristics of the combine were estimated with the power spectral density of the time series data of accelerations. From this research, the following results were obtained. 1. Vibration of a head-feeding combine under the stationary condition(engine, thresher and cutter are driven without harvesting) is mainly influenced by the engine. Further, 1/3, 1/2 (sub-harmonic) frequency components of the engine are observed besides engine driving frequency component(45Hz). 2. Vibration of a head-feeding combine under the harvesting condition is influenced by the engine, threshing unit and driving unit. Namely, some kinds of vibration frequency components in harvesting are observed compared with stationary condition. Further, sub-harmonic frequency components of the engine are observed besides engine driving frequency component as same as stationary condition. From these results, it may be concluded that vibration of a head-feeding combine is characteristics of semi-periodic and nonlinear vibration.

  • PDF

Development and Application of New Evaluation System for Ride Comfort and Vibration on Railway Vehicles

  • Yoo Wan-Suk;Lee Chang-Hwan;Jeong Weui-Bong;Kim Sang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1469-1477
    • /
    • 2005
  • Vibrations related to ride comfort should be considered at the beginning of design stage. In general, ride comfort of human is mainly affected by vibration transmitted from the floor and seat. Also, vibration level is very important regarding with running safety on freight wagon. To ensure ride comfort for passenger coach and vibration level for freight wagon, tests had been repeated by different test procedures with several equipments. With different measuring and evaluations for these results, it took much time to evaluate test results. In this paper, a new evaluation procedure was developed combining several software for ride comfort and vibration level test on railway vehicles. In addition, this developed system is capable of ride comfort test and vibration test by a single integrated system that is capable of immediate reporting the test result. With this developed system, the comfort in a passenger coach and the vibration in a freight car were evaluated. And the simulation results from the proposed system are verified by a field test.

A Study on the Effecting Factors of the Fatigue on Vehicle (자동차 피로감에 영향을 미치는 요인에 관한 연구)

  • 권규식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.58
    • /
    • pp.71-79
    • /
    • 2000
  • In this study, through the roadside interview, drivers'feeling about fatigue has been evaluated synthetically and systematically when they drive a vehicle according to their sex, vehicle type, driving career, etc. Also, with the human sensibility evaluation technique, we grasped the human sensibility structure for the fatigue in a vehicle and as an objective evaluation index for comfort and fatigue in a vehicle, we developed a sensibility database. Through the survey and research, extracting and understanding the importance of factors which have influence on the fatigue in driving can be used as basic data that can suggest more comfort and pleasant driving environment to drivers. Also, human sensibility database regarding to the comfort and fatigue in a vehicle can be used as basic data in ergonomic vehicle design, evaluation for seat , comfort seat development, development of vibration reduction method and so on.

  • PDF

Ride Analysis of A Semi-Active Suspension Seat with Sky-Hook Control (스카이-훅 제어를 이용한 반능동 현가식 운전석의 승차감 해석)

  • Kang, T.H.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.33-39
    • /
    • 2002
  • Commercial vehicles are mostly subjected to relatively rougher ground environment than passenger vehicles. Many driver's seats of commercial vehicles have suspension system with spring and dampers. Then, impact or vibrative forces transmitted from the vehicle to the driver can be attenuated. This study deals with a ride evaluation method using sky-hook control algorithm for the suspension dampers. Vibration amplitude transmissibilities were compared between passive dampers and semi-active dampers with sky-hook control method.

  • PDF

Human Response to Idle Vibration of Passenger Vehicle Related to Seating Posture (승용차량의 아이들 진동을 고려한 착석자세에 따른 인체의 반응특성 분석)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1121-1127
    • /
    • 2010
  • Human characteristic responding to idle vibration on passenger vehicle was studied to find if affected by seating posture of passenger. When twelve male subjects are exposed to moderate vertical vibration of 0.224 $m/s^2$ r.m.s. at frequency range from 3 Hz to 40 Hz, it was found that seating posture significantly affects to biodynamical characteristics, apparent mass and apparent eccentric mass, at most range of idle vibration frequency(20~40 Hz). The supported thigh contact on rigid seat showed bigger values in the two biodynamical characteristics than the average thigh contact. The bigger apparent mass and apparent eccentric mass in the seating posture of the supported thigh contact can be assumed more strengthened muscle at the frequency range.

Six-axis Biodynamic Response to Vertical Whole-body Vibration (수직방향 진동에 대한 인체의 6축 방향 반응특성분석)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.218-223
    • /
    • 2011
  • Seated human subjects have been exposed to vertical vibration so as to investigate six-axis biodynamic response. Sixteen males were exposed to random vertical vibration in the frequency range(3~40Hz) at one vibration magnitude(0.224m/$s^2$ r.m.s.). Forces were measured in the vertical, fore-and-aft, lateral, roll, pitch and yaw direction on the seat. The median of cross-axis apparent mass magnitude in the fore-and-aft direction could reach up to 20% of the apparent mass magnitude at resonance frequency. And the median of apparent eccentric mass magnitude in the roll direction could reach up to 15% of the apparent eccentric mass magnitude in the pitch direction at resonance frequency. But cross-axis apparent mass in the lateral direction and apparent eccentric mass in the yaw direction showed very small.

  • PDF

Modeling of Automobile Suspension System for Analyzing Automobile Vibration (자동차 진동해석을 위한 자동차 현가계의 모델링)

  • Lee, Tae-keun;Kim, Byong-sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.135-147
    • /
    • 2005
  • As automobile technology advances, a smoother ride with less noise is desired. In order to achieve these purposes, a study on the vibration and noise produced by a moving automobile was carried out and a model for tire vibration characteristics which influence the ride performance was developed. The model was verified through simulations and experiments. The developed model was then applied to a half car model and automobile vibrations were analyzed. The effects of tire design parameters on the automobile vibration energy were investigated. The results from laboratory and field tests confirm the validity of the analytical model. The 17-DOF half-car model was built to analyze automobile vibration. The characteristics of the nonlinear model for a shock absorber were applied to this model. The results from the present 17-DOF half car model incorporating the analytical tire model with tire design parameters, were compared with the 5-DOF half car model where the tire was modeled with linear springs. The results of the 17-DOF model are close to the experimental results. Using the 17-DOF model, the influence of tire design parameter were considered. According to the analysis results, the vibrations at seat/body/wheel were predicted by simulation and experiment.

Fatigue-Decreased Proficiency(FDP) Boundary for Whole-Body Vibration Exposure in Passenger Car Driver (승용차 운전자의 전신진동노출에 대한 피로-감소숙달 경계)

  • Jeung ae Yeal;Lee Ki-Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1211-1216
    • /
    • 2002
  • To evaluate whole-body vibration(WBV) exposure and fatigue-decreased proficiency(FDP) boundary in passenger car driver, several roads in Busan were divided into 3 types by the condition of road surface; Road 1 was partially damaged, Road 2 was normal without damage, and Road 3 was better than Road 2. The results were following: The highest passenger driver's exposures to whole-body vibration acceleration and fatigue-decreased proficiency boundary at 40km/h were 0.108m/s² and about 2099 minutes in Road 2 for xh axis, 0.134m/s² and about 1585 minutes in Road 2 for yh axis, and 0.183m/s² and about 1053 minutes in Road 2 for zh axis, respectively. The highest passenger driver's exposures to whole-body vibration acceleration and fatigue-decreased proficiency boundary at 80km/h were 0.219m/s² and about 830 minutes in Road 3 xh axis, 0.203m/s² and about 918 minutes in Road 3 for yh axis, and 0.622m/s² and about 195 minutes in Road 1 for zh axis, respectively. The highest vector sums of whole-body vibration exposure at 40km/h and 804km/h were 0.328m/s² in Road 2 and 0.730m/s² in Road 1, respectively. The highest crest factors at 40km/h were 4.25 in Road 1 for xh, 4.51 in Road 3 for yh, and 5.81 in Road 2 for zh, respectively. The highest crest factors at 80km/h were 5.57 in Road 1 for xh, 5.60 in Road 2 for yh, and 6.46 in Road 3 for zh, respectively. The highest transmissibilities of whole-body vibration from floor to seat at 40km/h and 80km/h were 0.89 in Road 3 and 0.82 in Road 3 for xh axis, 0.83 in Road 3 and 0.87 in Road 1 and 2 for yh, and 0.80 in Road 2 and 0.92 in Road 1 tor zh axis, respectively. The highest fatigue-decreased proficiency boundaries for whole-body vibration exposure of passenger car driver in floor and seat were 457 minutes in Road 3 and 583 minutes in Road 3 at 40km/h and 159 minutes in Road 2 and 251 minutes in Road 2 at 80km/h, respectively.

Optimal Power Maintain of Electric Wheelchair by using Applying Complementary Filter on the Smart Control System (최적의 전동휠체어 시트 평형유지를 위한 상호보안 필터 기반의 스마트 제어 시스템 연구)

  • Park, Sanghyun;Kim, Jinsul
    • Journal of Digital Contents Society
    • /
    • v.16 no.3
    • /
    • pp.355-363
    • /
    • 2015
  • In this paper, we propose a system for controlling the seat of the electric wheelchair depending on the slope of the terrain in real time by using the ATmega smart control based on the board. Smart control board includes a gyro sensor, an acceleration sensor and Tilt sensor, when the electric wheelchairs pass slope of the terrain, they use three sensors to identify terrain configuration in real time. We also applied the Complementary Filter in the gyro sensor and acceleration sensor, so the electric wheelchairs know the exact terrain by solving the interference during the movement. Based on this, the noise power wheelchair due to the movement will be reduced, the seat continues reliably movement without being vibration. In this paper, providing an application on the smart phone platform for the convenience of users who are not familiar with how to use electric wheelchairs, they can easily control wheelchairs. Control platform of the smart phone is able to monitor the electric wheelchair in real-time, with regard to pressure prevention, help the slope of the seat to be arbitrarily controlled.

Optimal Design and Performance Evaluation of X-type Magnetic Spring Suspension for Commercial Vehicle Seat (상용차 시트용 X-형 구조 마그네틱 현가기구의 최적 설계 및 성능평가)

  • Kwac, Lee Ku;Kim, Hong Gun;Song, Jung Sang;Shin, Hee Jae;Seo, Min Kang;Kim, Byung Ju;An, Kay Hyeok;Lee, Hye Min;Han, Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.456-464
    • /
    • 2014
  • Commercial vehicle drivers typically feel more fatigued compared to general-public drivers. because they spend longer periods of time driving and experience more rough road conditions. This study showed that the application of a magnet, a linear spring, and a seat suspension with nonlinear characteristics was the optimal design to increase comfort while driving. The resonant frequency for the optimal design suspension was 2.8 Hz, and the stiffness was analyzed through displacement-load experiments. Vibration transmissibility was analyzed by suspension stiffness and the existing dynamic compression. The magnetic spring type was at 0.875. As a result, the X-type magnetic spring performed better than the existing spring at 0.729.