The main objectives of this study are to introduce Global Seasonal forecasting system version5 (GloSea5) of KMA and to evaluate the performance of ensemble prediction of system. KMA has performed an operational seasonal forecast system which is a joint system between KMA and UK Met office since 2014. GloSea5 is a fully coupled global climate model which consists of atmosphere (UM), ocean (NEMO), land surface (JULES) and sea ice (CICE) components through the coupler OASIS. The model resolution, used in GloSea5, is N216L85 (~60 km in mid-latitudes) in the atmosphere and ORCA0.25L75 ($0.25^{\circ}$ on a tri-polar grid) in the ocean. In this research, we evaluate the performance of this system using by RMSE, Correlation and MSSS for ensemble mean values. The forecast (FCST) and hindcast (HCST) are separately verified, and the operational data of GloSea5 are used from 2014 to 2015. The performance skills are similar to the past study. For example, the RMSE of h500 is increased from 22.30 gpm of 1 week forecast to 53.82 gpm of 7 week forecast but there is a similar error about 50~53 gpm after 3 week forecast. The Nino Index of SST shows a great correlation (higher than 0.9) up to 7 week forecast in Nino 3.4 area. It can be concluded that GloSea5 has a great performance for seasonal prediction.
The comparison of prediction errors in geopotential height, temperature, and precipitation forecasts is made quantitatively to evaluate medium-range forecast skills between Global Seasonal Forecasting System version 5 (GloSea5) and Unified Model (UM) in operation by Korea Meteorological Administration during 2014. In addition, the performances in prediction of sea surface temperature anomaly in NINO3.4 region, Madden and Julian Oscillation (MJO) index, and tropical storms in western north Pacific are evaluated. The result of evaluations appears that the forecast skill of UM with lower values of root-mean square error is generally superior to GloSea5 during forecast periods (0 to 12 days). The forecast error tends to increase rapidly in GloSea5 during the first half of the forecast period, and then it shows down so that the skill difference between UM and GloSea5 becomes negligible as the forecast time increases. Precipitation forecast of GloSea5 is not as bad as expected and the skill is comparable to that of UM during 10-day forecasts. Especially, in predictions of sea surface temperature in NINO3.4 region, MJO index, and tropical storms in western Pacific, GloSea5 shows similar or better performance than UM. Throughout comparison of forecast skills for main meteorological elements and weather extremes during medium-range, the effects of initial and model errors in atmosphere-ocean coupled model are verified and it is suggested that GloSea5 is useful system for not only seasonal forecasts but also short- and medium-range forecasts.
Initialization of the global seasonal forecast system is as much important as the quality of the embedded climate model for the climate prediction in sub-seasonal time scale. Recent studies have emphasized the important role of soil moisture initialization, suggesting a significant increase in the prediction skill particularly in the mid-latitude land area where the influence of sea surface temperature in the tropics is less crucial and the potential predictability is supplemented by land-atmosphere interaction. This study developed a new soil moisture initialization method applicable to the KMA operational seasonal forecasting system. The method includes first the long-term integration of the offline land surface model driven by observed atmospheric forcing and precipitation. This soil moisture reanalysis is given for the initial state in the ensemble seasonal forecasts through a simple anomaly initialization technique to avoid the simulation drift caused by the systematic model bias. To evaluate the impact of the soil moisture initialization, two sets of long-term, 10-member ensemble experiment runs have been conducted for 1996~2009. As a result, the soil moisture initialization improves the prediction skill of surface air temperature significantly at the zero to one month forecast lead (up to ~60 days forecast lead), although the skill increase in precipitation is less significant. This study suggests that improvements of the prediction in the sub-seasonal timescale require the improvement in the quality of initial data as well as the adequate treatment of the model systematic bias.
This study investigates the possibility of seasonal prediction for tropical cyclone activity in the western North Pacific by using a dynamical modeling approach. We use data from the SMIP/HFP (Seasonal Prediction Model Inter-comparison Project/Historical Forecast Project) experiment with the Korea Meteorological Administration's GDAPS (Global Data Assimilation and Prediction System) T106 model, focusing our analysis on model-generated tropical cyclones. It is found that the prediction depends primarily on the tropical cyclone (TC) detecting criteria. Additionally, a scaling factor and a different weighting to each ensemble member are found to be essential for the best predictions of summertime TC activity. This approach indeed shows a certain skill not only in the category forecast but in the standard verifications such as Brier score and relative operating characteristics (ROC).
Does snow depth initialization have a quantitative impact on sub-seasonal to seasonal prediction skill? To answer this question, a snow depth initialization technique for seasonal forecast system has been implemented and the impact of the initialization on the seasonal forecast of surface air temperature during the wintertime is examined. Since the snow depth observation can not be directly used in the model simulation due to the large systematic bias and much smaller model variability, an anomaly rescaling method to the snow depth initialization is applied. Snow depth in the model is initialized by adding a rescaled snow depth observation anomaly to the model snow depth climatology. A suite of seasonal forecast is performed for each year in recent 12 years (1999-2010) with and without the snow depth initialization to evaluate the performance of the developed technique. The results show that the seasonal forecast of surface air temperature over East Asian region sensitively depends on the initial snow depth anomaly over the region. However, the sensitivity shows large differences for different timing of the initialization and forecast lead time. Especially, the snow depth anomaly initialized in the late winter (Mar. 1) is the most effective in modulating the surface air temperature anomaly after one month. The real predictability gained by the snow depth initialization is also examined from the comparison with observation. The gain of the real predictability is generally small except for the forecasting experiment in the early winter (Nov. 1), which shows some skillful forecasts. Implications of these results and future directions for further development are discussed.
Changes in a marine environment have a broad socioeconomic implication on fisheries and their relevant industries so that there has been a growing demand for the medium-range (months to years) prediction of the marine environment Using a medium-range ocean prediction model (Ocean Mid-range prediction System, OMIDAS) for the northwest Pacific, this study attempted to assess seasonal difference in the mid-range predictability of the sea surface temperature (SST), focusing on the Korea seas characterized as a complex marine system. A three-month re-forecast experiment was conducted for each of the four seasons in 2016 starting from January, forced with Climate Forecast System version 2 (CFSv2) forecast data. The assessment using relative root-mean-square-error was taken for the last month SST of each experiment. Compared to the CFSv2, the OMIDAS revealed a better prediction skill for the Korea seas SST, particularly in the Yellow sea mainly due to a more realistic representation of the topography and current systems. Seasonally, the OMIDAS showed better predictability in the warm seasons (spring and summer) than in the cold seasons (fall and winter), suggesting seasonal dependency in predictability of the Korea seas. In addition, the mid-range predictability for the Korea seas significantly varies depending on regions: the predictability was higher in the East Sea than in the Yellow Sea. The improvement in the seasonal predictability for the Korea seas by OMIDAS highlights the importance of a regional ocean modeling system for a medium-range marine prediction.
The seasonal forecast skill of tropical cyclones (TCs) in the Northern Hemisphere from the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 6 (GloSea6) hindcast has been verified for the period 1993 to 2016. The operational climate prediction system at KMA was upgraded from GloSea5 to GloSea6 in 2022, therefore further validation was warranted for the seasonal predictability and variability of this new system for TC forecasts. In this study, we examine the frequency, track density, duration, and strength of TCs in the North Indian Ocean, the western North Pacific, the eastern North Pacific, and the North Atlantic against the best track data. This methodology follows a previous study covering the period 1996 to 2009 published in 2020. GloSea6 indicates a higher frequency of TC generation compared to observations in the western North Pacific and the eastern North Pacific, suggesting the possibility of more TC generation than GloSea5. Additionally, GloSea6 exhibits better interannual variability of TC frequency, which shows relatively good correlation with observations in the North Atlantic and the western North Pacific. Regarding TC intensity, GloSea6 still underestimates the minimum surface pressures and maximum wind speeds from TCs, as is common among most climate models due to lower horizontal resolutions. However, GloSea6 is likely capable of simulating slightly stronger TCs than GloSea5, partly attributed to more frequent 6-hourly outputs compared to the previous daily outputs.
A new soil moisture initialization scheme is applied to the Korea Meteorological Administration (KMA) Global Seasonal forecasting system version 6 (GloSea6). It is designed to ingest the microwave soil moisture retrievals from Soil Moisture Active Passive (SMAP) radiometer using the Local Ensemble Transform Kalman Filter (LETKF). In this technical note, we describe the procedure of the newly-adopted initialization scheme, the change of soil moisture states by assimilation, and the forecast skill differences for the surface temperature and precipitation by GloSea6 simulation from two preliminary experiments. Based on a 4-year analysis experiment, the soil moisture from the land-surface model of current operational GloSea6 is found to be drier generally comparing to SMAP observation. LETKF data assimilation shows a tendency toward being wet globally, especially in arid area such as deserts and Tibetan Plateau. Also, it increases soil moisture analysis increments in most soil levels of wetness in land than current operation. The other experiment of GloSea6 forecast with application of the new initialization system for the heat wave case in 2020 summer shows that the memory of soil moisture anomalies obtained by the new initialization system is persistent throughout the entire forecast period of three months. However, averaged forecast improvements are not substantial and mixed over Eurasia during the period of forecast: forecast skill for the precipitation improved slightly but for the surface air temperature rather degraded. Our preliminary results suggest that additional elaborate developments in the soil moisture initialization are still required to improve overall forecast skills.
In the present study, we assess the GloSea5 (Global Seasonal Forecasting System version 5) near-surface ocean current forecasts using globally observed surface drifter dataset. Annual mean surface current fields at 0-day forecast lead time are quite consistent with drifter-derived velocity fields, and low values of root mean square (RMS) errors distributes in global oceans, except for regions of high variability, such as the Antarctic Circumpolar Current, Kuroshio, and Gulf Stream. Moreover a comparison with the global high-resolution forecasting system, HYCOM (Hybrid Coordinate Ocean Model), signifies that GloSea5 performs well in terms of short-range surface-current forecasts. Predictions from 0-day to 4-week lead time are also validated for the global ocean and regions covering the main ocean basins. In general, the Indian Ocean and tropical regions yield relatively high RMS errors against all forecast lead times, whilst the Pacific and Atlantic Oceans show low values. RMS errors against forecast lead time ranging from 0-day to 4-week reveal the largest increase rate between 0-day and 1-week lead time in all regions. Correlation against forecast lead time also reveals similar results. In addition, a strong westward bias of about $0.2m\;s^{-1}$ is found along the Equator in the western Pacific on the initial forecast day, and it extends toward the Equator of the eastern Pacific as the lead time increases.
Seasonal predictability and variability of tropical storms (TCs) simulated in the Global Seasonal Forecast System version 5 (GloSea5) of the Korea Meteorological Administration (KMA) is assessed in Northern Hemisphere in 1996~2009. In the KMA, the GloSea5-Global Atmosphere version 3.0 (GloSea5-GA3) that was previously operated was switched to the GloSea5-Global Coupled version 2.0 (GloSea5-GC2) with data assimilation system since May 2016. In this study, frequency, track, duration, and strength of the TCs in the North Indian Ocean, Western Pacific, Eastern Pacific, and North Atlantic regions derived from the GloSea5-GC2 and GloSea5-GA3 are examined against the best track data during the research period. In general, the GloSea5 shows a good skill for the prediction of seasonally averaged number of the TCs in the Eastern and Western Pacific regions, but underestimation of those in the North Atlantic region. Both the GloSea5-GA3 and GC2 are not able to predict the recurvature of the TCs in the North Western Pacific Ocean (NWPO), which implies that there is no skill for the prediction of landfalls in the Korean peninsula. The GloSea5-GC2 has higher skills for predictability and variability of the TCs than the GloSea5-GA3, although continuous improvements in the operational system for seasonal forecast are still necessary to simulate TCs more realistically in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.