• Title/Summary/Keyword: Seasonal forecast model

Search Result 131, Processing Time 0.025 seconds

Multivariable Integrated Evaluation of GloSea5 Ocean Hindcasting

  • Lee, Hyomee;Moon, Byung-Kwon;Kim, Han-Kyoung;Wie, Jieun;Park, Hyo Jin;Chang, Pil-Hun;Lee, Johan;Kim, Yoonjae
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.605-622
    • /
    • 2021
  • Seasonal forecasting has numerous socioeconomic benefits because it can be used for disaster mitigation. Therefore, it is necessary to diagnose and improve the seasonal forecast model. Moreover, the model performance is partly related to the ocean model. This study evaluated the hindcast performance in the upper ocean of the Global Seasonal Forecasting System version 5-Global Couple Configuration 2 (GloSea5-GC2) using a multivariable integrated evaluation method. The normalized potential temperature, salinity, zonal and meridional currents, and sea surface height anomalies were evaluated. Model performance was affected by the target month and was found to be better in the Pacific than in the Atlantic. An increase in lead time led to a decrease in overall model performance, along with decreases in interannual variability, pattern similarity, and root mean square vector deviation. Improving the performance for ocean currents is a more critical than enhancing the performance for other evaluated variables. The tropical Pacific showed the best accuracy in the surface layer, but a spring predictability barrier was present. At the depth of 301 m, the north Pacific and tropical Atlantic exhibited the best and worst accuracies, respectively. These findings provide fundamental evidence for the ocean forecasting performance of GloSea5.

Construction of the Regional Prediction System using a Regional Climate Model and Validation of its Wintertime Forecast (지역기후모델을 이용한 상세계절예측시스템 구축 및 겨울철 예측성 검증)

  • Kim, Moon-Hyun;Kang, Hyun-Suk;Byun, Young-Hwa;Park, Suhee;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.17-33
    • /
    • 2011
  • A dynamical downscaling system for seasonal forecast has been constructed based on a regional climate model, and its predictability was investigated for 10 years' wintertime (December-January-February; DJF) climatology in East Asia. Initial and lateral boundary conditions were obtained from the operational seasonal forecasting data, which are realtime output of the Global Data Assimilation and Prediction System (GDAPS) at Korea Meteorological Administration (KMA). Sea surface temperature was also obtained from the operational forecasts, i.e., KMA El-Nino and Global Sea Surface Temperature Forecast System. In order to determine the better configuration of the regional climate model for East Asian regions, two sensitivity experiments were carried out for one winter season (97/98 DJF): One is for the topography blending and the other is for the cumulus parameterization scheme. After determining the proper configuration, the predictability of the regional forecasting system was validated with respect to 850 hPa temperature and precipitation. The results showed that mean fields error and other verification statistics were generally decreased compared to GDAPS, most evident in 500 hPa geopotential heights. These improved simulation affected season prediction, and then HSS was better 36% and 11% about 850 hPa temperature and precipitation, respectively.

Development of a mid-term preceding observation model for radish (무의 중기 선행관측모형 개발)

  • Cho, Jae-Hwan;Lee, Han-Sung
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.571-581
    • /
    • 2011
  • This study develops a mid-term preceding observation model of radish to complement an existing short-term agricultural observation model. The first purpose of the study is to extend a three seasonal classification(spring, summer, fall) of fruit-vegetables to a four seasonal classification that involves the winter additionally. This allows us to verify the reason for demand and supply unbalance and unstable price of radish. The second purpose is to construct a mid-term preceding observation model that would be used to forecast planted areas, output, monthly shipment and price. To achieve these purposes, several multiple regression models are estimated. A system is consisted of a planted areas equation, a yield equation, monthly shipment distribution equation, and monthly price equation. To calculate output an auxiliary equation is involved in the system and the consumer price index etc are considered as exogenous variables.

Assimilation of Satellite-Based Soil Moisture (SMAP) in KMA GloSea6: The Results of the First Preliminary Experiment (기상청 GloSea의 위성관측 기반 토양수분(SMAP) 동화: 예비 실험 분석)

  • Ji, Hee-Sook;Hwang, Seung-On;Lee, Johan;Hyun, Yu-Kyung;Ryu, Young;Boo, Kyung-On
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.395-409
    • /
    • 2022
  • A new soil moisture initialization scheme is applied to the Korea Meteorological Administration (KMA) Global Seasonal forecasting system version 6 (GloSea6). It is designed to ingest the microwave soil moisture retrievals from Soil Moisture Active Passive (SMAP) radiometer using the Local Ensemble Transform Kalman Filter (LETKF). In this technical note, we describe the procedure of the newly-adopted initialization scheme, the change of soil moisture states by assimilation, and the forecast skill differences for the surface temperature and precipitation by GloSea6 simulation from two preliminary experiments. Based on a 4-year analysis experiment, the soil moisture from the land-surface model of current operational GloSea6 is found to be drier generally comparing to SMAP observation. LETKF data assimilation shows a tendency toward being wet globally, especially in arid area such as deserts and Tibetan Plateau. Also, it increases soil moisture analysis increments in most soil levels of wetness in land than current operation. The other experiment of GloSea6 forecast with application of the new initialization system for the heat wave case in 2020 summer shows that the memory of soil moisture anomalies obtained by the new initialization system is persistent throughout the entire forecast period of three months. However, averaged forecast improvements are not substantial and mixed over Eurasia during the period of forecast: forecast skill for the precipitation improved slightly but for the surface air temperature rather degraded. Our preliminary results suggest that additional elaborate developments in the soil moisture initialization are still required to improve overall forecast skills.

Lessons Learned and Challenges Encountered in Retail Sales Forecast

  • Song, Qiang
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.2
    • /
    • pp.196-209
    • /
    • 2015
  • Retail sales forecast is a special area of forecasting. Its unique characteristics call for unique data models and treatment, and unique forecasting processes. In this paper, we will address lessons learned and challenges encountered in retail sales forecast from a practical and technical perspective. In particular, starting with the data models of retail sales data, we proceed to address issues existing in estimating and processing each component in the data model. We will discuss how to estimate the multi-seasonal cycles in retail sales data, and the limitations of the existing methodologies. In addition, we will talk about the distinction between business events and forecast events, the methodologies used in event detection and event effect estimation, and the difficulties in compound event detection and effect estimation. For each of the issues and challenges, we will present our solution strategy. Some of the solution strategies can be generalized and could be helpful in solving similar forecast problems in different areas.

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.

An Assessment of Applicability of Heat Waves Using Extreme Forecast Index in KMA Climate Prediction System (GloSea5) (기상청 현업 기후예측시스템(GloSea5)에서의 극한예측지수를 이용한 여름철 폭염 예측 성능 평가)

  • Heo, Sol-Ip;Hyun, Yu-Kyung;Ryu, Young;Kang, Hyun-Suk;Lim, Yoon-Jin;Kim, Yoonjae
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.257-267
    • /
    • 2019
  • This study is to assess the applicability of the Extreme Forecast Index (EFI) algorithm of the ECMWF seasonal forecast system to the Global Seasonal Forecasting System version 5 (GloSea5), operational seasonal forecast system of the Korea Meteorological Administration (KMA). The EFI is based on the difference between Cumulative Distribution Function (CDF) curves of the model's climate data and the current ensemble forecast distribution, which is essential to diagnose the predictability in the extreme cases. To investigate its applicability, the experiment was conducted during the heat-wave cases (the year of 1994 and 2003) and compared GloSea5 hindcast data based EFI with anomaly data of ERA-Interim. The data also used to determine quantitative estimates of Probability Of Detection (POD), False Alarm Ratio (FAR), and spatial pattern correlation. The results showed that the area of ERA-Interim indicating above 4-degree temperature corresponded to the area of EFI 0.8 and above. POD showed high ratio (0.7 and 0.9, respectively), when ERA-Interim anomaly data were the highest (on Jul. 11, 1994 (> $5^{\circ}C$) and Aug. 8, 2003 (> $7^{\circ}C$), respectively). The spatial pattern showed a high correlation in the range of 0.5~0.9. However, the correlation decreased as the lead time increased. Furthermore, the case of Korea heat wave in 2018 was conducted using GloSea5 forecast data to validate EFI showed successful prediction for two to three weeks lead time. As a result, the EFI forecasts can be used to predict the probability that an extreme weather event of interest might occur. Overall, we expected these results to be available for extreme weather forecasting.

Optimal Forecasting for Sales at Convenience Stores in Korea Using a Seasonal ARIMA-Intervention Model (계절형 ARIMA-Intervention 모형을 이용한 한국 편의점 최적 매출예측)

  • Jeong, Dong-Bin
    • Journal of Distribution Science
    • /
    • v.14 no.11
    • /
    • pp.83-90
    • /
    • 2016
  • Purpose - During the last two years, convenient stores (CS) are emerging as one of the most fast-growing retail trades in Korea. The goal of this work is to forecast and to analyze sales at CS using ARIMA-Intervention model (IM) and exponential smoothing method (ESM), together with sales at supermarkets in South Korea. Considering that two retail trades above are homogeneous and comparable in size and purchasing items on off-line distribution channel, individual behavior and characteristic can be detected and also relative superiority of future growth can be forecasted. In particular, the rapid growth of sales at CS is regarded as an everlasting external event, or step intervention, so that IM with season variation can be examined. At the same time, Winters ESM can be investigated as an alternative to seasonal ARIMA-IM, on the assumption that the underlying series shows exponentially decreasing weights over time. In case of sales at supermarkets, the marked intervention could not be found over the underlying periods, so that only Winters ESM is considered. Research Design, Data, and Methodology - The dataset of this research is obtained from Korean Statistical Information Service (1/2010~7/2016) and Survey of Service Trend of Korea Statistics Administration. This work is exploited time series analyses such as IM, ESM and model-fitting statistics by using TSPLOT, TSMODEL, EXSMOOTH, ARIMA and MODELFIT procedures in SPSS 23.0. Results - By applying seasonal ARIMA-Intervention model to sales at CS, the steep and persisting increase can be expected over the next one year. On the other hand, we expect the rate of sales growth of supermarkets to be lagging and tied up constantly in the next 2016 year. Conclusions - Based on 2017 one-year sales forecasts for CS and supermarkets, we can yield the useful information for the development of CS and also for all retail trades. Future study is needed to analyze sales of popular items individually such as tobacco, banana milk, soju and so on and to get segmented results. Furthermore, we can expand sales forecasts to other retail trades such as department stores, hypermarkets, non-store retailing, so that comprehensive diagnostics can be delivered in the future.

Forecasting the East Sea Rim Container Volume by SARIMA Time Series Model (SARIMA 시계열 모형을 이용한 환동해 물동량 예측)

  • Min-Ju Song;Hee-Yong Lee
    • Korea Trade Review
    • /
    • v.45 no.5
    • /
    • pp.75-89
    • /
    • 2020
  • The purpose of this paper was to analyze the trend of container volume using the Seasonal Autoregressive Intergrated Moving Average (SARIMA) model. To this end, this paper used monthly time-series data of the East Sea Rim from 2001 to 2019. As a result, the SARIMA(2,1,1)12 model was identified as the most suitable model, and the superiority of the SARIMA model was demonstrated by comparative analysis with the ARIMA model. In addition, to confirmed forecasting accuracy of SARIMA model, this paper compares the volume of predict container to the actual volume. According to the forecast for 24 months from 2020 to 2021, the volume of containaer increased from 60,100,000Ton in 2020 to 64,900,000Ton in 2021

Development of decision support system for water resources management using GloSea5 long-term rainfall forecasts and K-DRUM rainfall-runoff model (GloSea5 장기예측 강수량과 K-DRUM 강우-유출모형을 활용한 물관리 의사결정지원시스템 개발)

  • Song, Junghyun;Cho, Younghyun;Kim, Ilseok;Yi, Jonghyuk
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.22-34
    • /
    • 2017
  • The K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model), a distributed rainfall-runoff model of K-water, calculates predicted runoff and water surface level of a dam using precipitation data. In order to obtain long-term hydrometeorological information, K-DRUM requires long-term weather forecast. In this study, we built a system providing long-term hydrometeorological information using predicted rainfall ensemble of GloSea5(Global Seasonal Forecast System version 5), which is the seasonal meteorological forecasting system of KMA introduced in 2014. This system produces K-DRUM input data by automatic pre-processing and bias-correcting GloSea5 data, then derives long-term inflow predictions via K-DRUM. Web-based UI was developed for users to monitor the hydrometeorological information such as rainfall, runoff, and water surface level of dams. Through this UI, users can also test various dam management scenarios by adjusting discharge amount for decision-making.