• Title/Summary/Keyword: Seasonal dynamic

Search Result 97, Processing Time 0.029 seconds

Zooplankton Community Dynamic in Lentic Freshwater Ecosystems in the Nakdong River Basin (낙동강 유역권 내 정수생태계의 동물플랑크톤 군집 동태)

  • Kim, Seong-Ki;Hong, Dong-gyun;Kang, MeeA;Lee, Kyung-Lak;Lee, Hak Young;Joo, Gea-Jae;Choi, Jong-Yun
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.3
    • /
    • pp.410-420
    • /
    • 2015
  • In order to estimate the influence of environmental factors on zooplankton communities in lentic freshwater ecosystems, 20 reservoirs and wetlands were monitored by season in 2013. A total of 109 species of zooplankton were identified during the study period. Zooplankton assemblage showed a different distribution in its density and diversity in accordance with the seasons. In particular, the density of zooplankton (98 species and 603ind. L-1) was the most in autumn when compared to the other seasons. In order to effectively analyze zooplankton distribution that are affected by various environmental factors, a Self-Organizing Map (SOM) was used, which extracts information through competitive and adaptive properties. A total of 11 variables (8 environment factors and 3 groups of zooplankton) were patterned on to the SOM. Based on a U-matrix, four clusters were identified from the model. Among zooplankton communities, rotifer displayed a positive relationship with water temperature, and cladocerans and copepod were positively related to conductivity, chlorophyll a, and nutrient factor (i. e. TN and TP). In contrast, high dissolved oxygen appeared to have a negative effect on zooplankton distribution. Consequently, the SOM results depicted a clear pattern of zooplankton density clusters partitioned by environmental factors, which play a key role in determining the seasonal distribution of zooplankton groups in lentic freshwater ecosystem.

The meaning based on Yin-Yang and Five Elements Principle in Semantic Landscape Composition of 'the Forty Eight Poems of Soswaewon' ('소쇄원(瀟灑園) 48영'의 의미경관 구성에 있어서 음양오행론적(陰陽五行論的) 의미(意味))

  • Jang, Il-Young;Shin, Sang-Sup
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.2
    • /
    • pp.43-57
    • /
    • 2013
  • The purpose of this study is to identify potential semantic landscape makeup of "the Forty Eight Poems of Soswaewon" according to Yin-Yang and Five Elements Principle(陰陽五行論). that speculation system between human's nature and cosmical universal order. Existing academic discussions made so far concerning this topic can be summed up as follows: 1. Among Yin-Yang-based landscape makeups of the Forty Eight Poems of Soswaewon, poetic writings for embodiment of interactions between nature and human behaviors focused on depicting dynamic aspects of a poetic narrator when he appreciates or explores hills and streams as of to live free from worldly cares. Primarily, many of those writings were created on the east and south primarily through assignment of yang. On the other hand, poetic writings for embodiment of nature and seasonal scenery - as static landscape makeup of yin - were often created on or near the north and west for many times. Those writings focusing on embodiment of nature and artificial scenery as a work are divided into two categories: One category refers to author Kim In-hu's expression of semantic landscape from seasonal scenery in nature. The other refers to his depiction of realistic garden images as they are. In the Forty Eight Poems of Soswaewon, the poetic writings show that author Kim focused on embodying seasonal scenery rather than expressing human behaviors. In addition, both Poem No. 1 and Poem No. 48(last poem; titled 'Jangwon Jeyeong') were created in a same place, which author Kim sought to understand the place as a space of beginning and end where yin and yang - i.e. the principle of natural cycle - are inherent. 2. According to construction about landscape in the Forty Eight Poems of Soswaewon on the basis of Ohaeng-ron (five natural element principle), it was found that tree(木) and fire(火) are typical examples of a world combined by emanation. First, many of poetic writings depicting the sentiments of tree focused on embodying seasonal scenery and were located in the place of Ogogmun(五曲門) area in the east, from overall perspective of Soswaewon. The content of these poems shows generation and curve / straightness in flexibility and simplicity. Many of poems depicting the sentiments of fire(火) focused on embodying human behaviors, and they were created in Aeyangdan area on the south of Soswaewon over which sun rises at noon. These poems are all on a status of side movement that is characterized by emanation and ascension which belong to attributes of yang. 3. With regard to Ohaeng-ron's interpretation about landscape in the Forty Eight Poems of Soswaewon, it was found that metal(金) and water(水) are typical examples of world combined by convergence. First, it was found that all of poems depicting sentiments of metal focused on embodying seasonal scenery, and were created in a bamboo grove area on the west from overall perspective of Soswaewon. They represent scenery of autumn among 4 seasons to symbolize faithfulness vested in a man of virtue(seonbi) with integrity and righteousness. Poems depicting sentiments of water were created in vicinity of Jewoldang on the north, possibly topmost of Soswaewon. They were divided into two categories: One category refers to poems embodying actions of welcoming the first full moon deep in the night after sunset, and the other refers to poems embodying natural scenery of snowscape. All of those poems focused on expressing any atmosphere of turning into yin via convergence. 4. With regard to Ohaeng-ron's interpretation of landscape in the Forty Eight Poems of Soswaewon, it was found that poems depicting sentiments of earth(土), a complex body of convergence and emanation, were created in vicinity of mountain stream around Gwangpunggak which is located in the center of Soswaewon. These poems focused on carrying actions of author Kim by way of natural phenomena and artificial scenery.

Application of CE-QUAL-W2 [v3.2] to Andong Reservoir: Part II: Simulations of Chlorophyll a and Total Phosphorus Dynamics

  • Ram, Bhattarai Prasid;Kim, Yoon-Hee;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.472-484
    • /
    • 2008
  • The calibrated Andong Reservoir hydro-dynamic module (PART I) of the 2-dimensional hydrodynamic and water quality model, CE-QUAL-W2 [v3.2], was applied to examine the dynamics of total phosphorus, and chlorophyll $\alpha$ concentration within Andong Reservoir. The modeling effort was supported with the data collected in the field for a five year period. In general, the model achieved a good accuracy throughout the calibration period for both chlorophyll ${\alpha}$ and total phosphorus concentration. The greatest deviation in algal concentration occurred on $10^{th}$ October, starting at the layer just beneath the surface layer and extending up to the depth of 35 m. This deviation is principally attributed to the effect of temperature on the algal growth rate. Also, on the same date, the model over-predicts hypolimnion and epilimnion total phosphorus concentration but under-predicts the high concentrated plume in the metalimnion. The large amount of upwelling of finer suspended solid particles, and re-suspension of the sediments laden with phosphorus, are thought to have caused high concentration in the epilimnion and hypolimnion, respectively. Nevertheless, the model well reproduced the seasonal dynamics of both chlorophyll a and total phosphorus concentration. Also, the model tracked the interflow of high phosphorus concentration plume brought by the turbid discharge during the Asian summer monsoon season. Two different hypothetical discharge scenarios (discharge from epilimnetic, and hypolimnetic layers) were analyzed to understand the response of total phosphorus interflow plume on the basis of differential discharge gate location. The simulated results showed that the hypolimnetic discharge gate operation ($103{\sim}113\;m$) was the most effective reservoir structural control method in quickly discharging the total phosphorus plume (decrease of in-reservoir concentration by 219% than present level).

Analysis of the Organization of Trading Area and Fashion Trend in Gumi based on the Observation of Fashion Brand Stores (패션 브랜드 지점 조사를 통한 구미시 상권 구조 및 패션 동향 분석)

  • Jeong Yoo Jene;Kim Dong In;Park Sang Jin;Chung Ihn Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.3_4 s.141
    • /
    • pp.511-522
    • /
    • 2005
  • The purpose of this study is to analyze the organization of trading area and fashion trend in Gumi based on the observation of fashion brand stores which had been undertaken on a regular basis from July 2001 through July 2004. Gumi has over 1,000 stores located in main trading streets, about $25\%$ of which was fashion retail stores. In July 2004, $64.6\%$ of them was selling branded products, and the number of unisex casual wear stores was the greatest, followed by women's casual wear stores, sportswear stores, and children's wear stores. On the main streets of Gumi, casual attires as well as casual wear stores can be easily observed because the population of eumi is young compared to that of other regions. Among casual wear brands, especially sensory, or trendy casual wear brands such like BNX, A6, Coax, Koolhaas, EXR, and Smex came into Gumi area in large numbers since fall of 2002. From the observation data, dynamic and systemic effects of economic state, population, seasonal elements, product characteristics, etc. on the organizations of trading area were identified.

Effect of tractor travelling speed on a tire slip

  • Kim, Yeon Soo;Lee, Sang Dae;Kim, Young Joo;Kim, Yong Joo;Choi, Chang Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.1
    • /
    • pp.120-127
    • /
    • 2018
  • The rural labor force has gradually been decreasing due to the decrement of the farm population and the increment of the aging population. To solve these problems, it is necessary to develop and study autonomous agricultural machinery. Therefore, analyzing the dynamic behavior of vehicles in an autonomous agricultural environment is important. Until now, most studies on agricultural machinery, especially on ground vehicle dynamics, have been done by field tests. However, these field test methods are time consuming and costly with seasonal restrictions. A research method that can replace existing field test methods by using simulations is needed. In this study, we did basic research analyzing the effect of the travelling speed of a tractor on tire slip using simulation software. A tractor simulation model was developed based on field conditions following a straight path. The simulation was done for three ranges of speed: 20 - 30 km/h (considered the normal travelling speed range), 6 - 8 km/h (considered the plow tillage speed range) and 2 - 4 km/h (considered the rotary tillage speed range). The results of the simulation show that the slip ratio and slip angle values tended to increase as the traveling speed range of the tractor decreased. From the simulation results, it can be concluded that at low tractor speeds, it becomes more difficult to control the vehicle path. In future research, simulations will be done with various work environments such as a curved path as well as with various friction coefficient conditions, and the simulation results will be experimentally verified by applying them to an agricultural tractor.

An Evaluation of Weather Model for Increasing Ampacity in KEPCO's Overhead Transmission Lines (한국전력 가공송전선의 허용전류를 증가시키기 위한 기상모델의 평가)

  • 김성덕
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.125-134
    • /
    • 2004
  • The new deregulated economic environment in the power utility market is forcing fundamental changes in the investment and operational decisions regarding transmission lines. Hence, it has come to be an important issue to evaluate their current utility in order to increase conductor ampacity based on conservative assumptions of worst case weather conditions. Static thermal rating has born still applied in most power companies worldwide, however some of them have been done various trials such as monitoring dynamic line ratings to increase line ratings in real time. This study is an attempt to access the static line ratings in Korea Electric Power Corporation(KEPCO) transmission lines, which were specified by weather model. Several environmental performances for determining static line ratings are examined by using the past weather data of Korean Meteorological Administration. As a result, it is shown that seasonal or regional line ratings could be adopt to the KEPCO's transmission lines, and their line ratings could be more increased without refurbishing current conductors in service to new high-temperature ones.

Optimal Operation Schedule of Semi-Fixed PV System and Its Effect on PV Power Generation Efficiency (반고정식 PV 시스템의 운영 스케줄 도출 및 그에 따른 발전 효율 변화 고찰)

  • Kwak, In-Kyu;Mun, Sun-Hye;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.69-77
    • /
    • 2017
  • The amount of solar irradiation obtained by a photovoltaic (PV) solar panel is the major factor determining the power generated by a PV system, and the array tilt angle is critical for maximizing panel radiation acquisition. There are three types of PV systems based on the manner of setting the array tilt angle: fixed, semi-fixed, and tracking systems. A fixed system cannot respond to seasonal solar altitude angle changes, and therefore cannot absorb the maximum available solar radiation. The tracking system continually adjusts the tilt angle to absorb the maximum available radiation, but requires additional cost for equipment, installation, operation, and maintenance. The semi-fixed system is only adjusted periodically (usually seasonally) to obtain more energy than a fixed system at an overall cost that is less than a tracking system. To maximize semi-fixed system efficiency, determining the optimal tilt angle adjustment schedule are required. In this research, we conducted a simulation to derive an optimal operation schedule for a semi-fixed system in Seoul, Korea (latitude $37.5^{\circ}$). We implemented a solar radiation acquisition model and PV genereation model on MATLAB. The optimal operation schedule was derived by changing the number of tilt angle adjustments throughout a year using a Dynamic Algorithm. The results show that adjusting the tilt angle 4 times a year was the most appropriate. and then, generation amount of PV system increased 2.80% compared with the fixed system. This corresponds to 99% compared to daily adjustment model. This increase would be quite valid as the PV system installation area increased.

Interannual Variability of the Water Masses Observed in the Tropical Northwestern Pacific (북서태평양 열대해역에서 관측된 수괴의 경년변동성)

  • Choi, Eunji;Jeon, Dongchull
    • Ocean and Polar Research
    • /
    • v.38 no.2
    • /
    • pp.161-169
    • /
    • 2016
  • The interannual variability of the water masses was analyzed from the CTD data measured in the tropical northwestern Pacific from 2006 to 2014. There are two typical water masses NPTW and NPIW that reveal the interannual variability in the survey area, in addition to two other water masses; the surface water mass TSW with a large seasonal variability and the deep water mass AACDW with a constant temperature-salinity characteristic at the depths deeper than 2,000 meters. In 2012 and 2014 NPTW was the most widely extended horizontally and thicker than 100 meters vertically, which was found over the entire survey area. However, NPTW was reduced and became much narrower in 2009 than in the other years. NPIW seemed to expand southwards from the north of $21^{\circ}N$ to $15^{\circ}N$ in 2008 and in 2012, which showed the salinity minimum in 2013 (< 34.15 psu). The sea surface height estimated by Absolute Dynamic Topography (ADT) approximately along $135^{\circ}E$ section showed the high peaks (> $1.45dyn{\cdot}m$) between $16^{\circ}N$ and $18^{\circ}N$ during the periods between 2007 and 2009 and between 2012 and 2013; the former peak lasted wider and longer in latitude and time (about three times) than the latter. The vertical section of the geostrophic currents in the upper 1,000 meters shows that there was a mesoscale pattern of repeated eastward and westward flows a few times in some years (2010 and 2014), which seemed to disappear in some other years (2008 and 2012); the former was closely related to the mesoscale eddies and the latter implied the pattern with the permanent currents. The persistent eastward flow between $17^{\circ}N$ and $19^{\circ}N$ seems to be related to the Subtropical Countercurrent (STCC).

Odorous Emissions from Household-related Sources: A Case Study on a Sewage Treatment Plant (생활악취 배출원의 악취 배출 특성 연구: 하수처리장을 중심으로)

  • Jeon, E.C.;Sa, J.H.;Kim, S.T.;Hong, J.H.;Kim, K.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.337-351
    • /
    • 2006
  • In this study, to describe the basic characteristics of strong odorous sources, the emissions of odorous compounds from a large-scale sewage treatment plant in K city were investigated. According to this study, the emission patterns of major odorous compounds were distinguished clearly by several factors such as treatment processing types, chemical compositions of odors released, and temporal changes (e.g., seasonal variations). For the purpose of this study, emission rates of odorous compounds were quantified using a dynamic flux chamber (DFC) method from three major treatment (T) processes including T1 (Grit sedimentation basin), T2 (Aeration tank), and T3 (Final sedimentation). When the relative strengths of each emission source were compared, the strongest one was seen from T1 with the maximum of $NH_{3}\;(34.5\;{\mu}g/m^{2}/min)$ followed by $H_{2}S\;(20.4\;{\mu}g/m^{2}/min)($. While the strongest emissions of most odorous compounds were seen commonly from T1, those seen from T2 and T3 were significantly reduced relative to the ones found in T1. Considering the general patterns of odorous emission, it is concluded that control of odors from T1 unit is most important because of its considerably high emission strengths.

An Energy Consumption Prediction Model for Smart Factory Using Data Mining Algorithms (데이터 마이닝 기반 스마트 공장 에너지 소모 예측 모델)

  • Sathishkumar, VE;Lee, Myeongbae;Lim, Jonghyun;Kim, Yubin;Shin, Changsun;Park, Jangwoo;Cho, Yongyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.5
    • /
    • pp.153-160
    • /
    • 2020
  • Energy Consumption Predictions for Industries has a prominent role to play in the energy management and control system as dynamic and seasonal changes are occurring in energy demand and supply. This paper introduces and explores the steel industry's predictive models of energy consumption. The data used includes lagging and leading reactive power lagging and leading current variable, emission of carbon dioxide (tCO2) and load type. Four statistical models are trained and tested in the test set: (a) Linear Regression (LR), (b) Radial Kernel Support Vector Machine (SVM RBF), (c) Gradient Boosting Machine (GBM), and (d) Random Forest (RF). Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used for calculating regression model predictive performance. When using all the predictors, the best model RF can provide RMSE value 7.33 in the test set.