• Title/Summary/Keyword: Seasonal classification

Search Result 127, Processing Time 0.031 seconds

Kansas Vegetation Mapping Using Multi-Temporal Remote Sensing Data: A Hybrid Approach (계절별 위성자료를 이용한 미국 캔자스주 식생 분류 - 하이브리드 접근방식의 적용 -)

  • ;Stephen Egbert;Dana Peterson;Aimee Stewart;Chris Lauver;Kevin Price;Clayton Blodgett;Jack Cully, Jr,;Glennis Kaufman
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.5
    • /
    • pp.667-685
    • /
    • 2003
  • To address the requirements of gap analysis for species protection, as well as the needs of state and federal agencies for detailed digital land cover, a 43-class map at the vegetation alliance level was created for the state of Kansas using multi-temporal Thematic Mapper imagery. The mapping approach included the use of three-date multi-seasonal imagery, a two-stage classification approach that first masked out cropland areas using unsupervised classification and then mapped natural vegetation with supervised classification, visualization techniques utilizing a map of small multiples and field experts, and extensive use of ancillary data in post-hoc processing. Accuracy assessment was conducted at three levels of generalization (Anderson Level I, vegetation formation, and vegetation alliance) and three cross-tabulation approaches. Overall accuracy ranged from 51.7% to 89.4%, depending on level of generalization, while accuracy figures for individual alliance classes varied by area covered and level of sampling.

Land cover classification based on the phonology of Korea using NOAA-AVHRR

  • Kim, Won-Joo;Nam, Ki-Deock;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.439-442
    • /
    • 1999
  • It is important to analyze the seasonal change profiles of land cover type in large scale for establishing preservation strategy and environmental monitoring. Because the NOAA-AVHRR data sets provide global data with high temporal resolution, it is suitable for the land cover classification of the large area. The objectives of this study were to classify land cover of Korea, to investigate the phenological profiles of land cover. The NOAA-AVHRR data from Jan. 1998 to Dec. 1998 were received by Korea Ocean Research & Development Institute(KORDI) and were used for this study. The NDVI data were produced from this data. And monthly maximum value composite data were made for reducing cloud effect and temporal classification. And the data were classified using the method of supervised classification. To label the land cover classes, they were classified again using generalized vegetation map and Landsat-TM classified image. And the profiles of each class was analyzed according to each month. Results of this study can be summarized as follows. First, it was verified that the use of vegetation map and TM classified map was available to obtain the temporal class labeling with NOAA-AVHRR. Second, phenological characteristics of plant communities of Korea using NOAA-AVHRR was identified. Third, NDVI of North Korea is lower on Summer than that of South Korea. And finally, Forest cover is higher than another cover types. Broadleaf forest is highest on may. Outline of covertype profiles was investigated.

  • PDF

A Study on the Preparation Method of Fruit Cropping Distribution Map using Satellite Images and GIS (위성영상과 GIS를 이용한 과수재배 분포도 작성 기법에 관한 연구)

  • Jo, Myung-Hee;Bu, Ki-Dong;Lee, Jung-Hyoup;Lee, Kwang-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.4
    • /
    • pp.73-86
    • /
    • 2000
  • This study focused on extracting an efficient method in the fruit cropping distribution mapping with various classification methods using multi-temporal satellite images and Geographic Information Systems(GIS). For this study, multi-temporal Landsat TM images, in observation data and existing fruit cropping area statistics were used to compare and analyze the properties of fruit cropping and seasonal distribution per classification method. As a result, this study concludes that Maximum Likelihood Method with earlier autumn satellite image was most efficient for the fruit cropping mapping using Landsat TM image. In addition, it was clarified that cropping area per administrative boundary was prepared and distribution pattern was identified efficiently using GIS spatial analysis.

  • PDF

Seasonal Variations of Marine Water Quality and Eutorphication Index in Mokpo Harbour (목포항의 수질 및 부영양도의 계절 변화)

  • Kim Kwang Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.3
    • /
    • pp.3-15
    • /
    • 2001
  • The in situ observations and the seawater analyses were conducted for 3 years from August 1996 to August 1999 in order to elucidate and evaluate seasonal variations of marine water quality and trophic state in Mokpo harbour of Korea. Compared the seasonal seawater qualities of Mokpo harbour with the OECD standards of trophic classification in parameters such as Secchi depth, dissolved inorganic nitrogen, phosphate phosphorus and chlorophyll-a, the trophic level of seawater in Mokpo harbour was evaluated to be in mesotrophic or eutrophic state through all 4 seasons and to be in eutrophic state, particularly In summer. The estimation of pollution index by eutrophication showed the seawater quality of Mokpo harbour to deteriorate and fall under the regular grades through all 4 seasons, although the seawater quality of Mokpo harbour was evaluated to be equivalent to the second or third class of the Korean seawater quality standards in view of COD values. The results of eutrophication index estimation showed the high potentiality of red tide occurrence In Mokpo harbour, particularly in summer or fall. In the light of the average atomic ratio of N/P in seawater, the limiting nutrient factor against the growth of phytoplankton was concluded to be phosphorus rather than nitrogen in Mokpo Harbour.

  • PDF

Classification of Daily Precipitation Patterns in South Korea using Mutivariate Statistical Methods

  • Mika, Janos;Kim, Baek-Jo;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1125-1139
    • /
    • 2006
  • The cluster analysis of diurnal precipitation patterns is performed by using daily precipitation of 59 stations in South Korea from 1973 to 1996 in four seasons of each year. Four seasons are shifted forward by 15 days compared to the general ones. Number of clusters are 15 in winter, 16 in spring and autumn, and 26 in summer, respectively. One of the classes is the totally dry day in each season, indicating that precipitation is never observed at any station. This is treated separately in this study. Distribution of the days among the clusters is rather uneven with rather low area-mean precipitation occurring most frequently. These 4 (seasons)$\times$2 (wet and dry days) classes represent more than the half (59 %) of all days of the year. On the other hand, even the smallest seasonal clusters show at least $5\sim9$ members in the 24 years (1973-1996) period of classification. The cluster analysis is directly performed for the major $5\sim8$ non-correlated coefficients of the diurnal precipitation patterns obtained by factor analysis In order to consider the spatial correlation. More specifically, hierarchical clustering based on Euclidean distance and Ward's method of agglomeration is applied. The relative variance explained by the clustering is as high as average (63%) with better capability in spring (66%) and winter (69 %), but lower than average in autumn (60%) and summer (59%). Through applying weighted relative variances, i.e. dividing the squared deviations by the cluster averages, we obtain even better values, i.e 78 % in average, compared to the same index without clustering. This means that the highest variance remains in the clusters with more precipitation. Besides all statistics necessary for the validation of the final classification, 4 cluster centers are mapped for each season to illustrate the range of typical extremities, paired according to their area mean precipitation or negative pattern correlation. Possible alternatives of the performed classification and reasons for their rejection are also discussed with inclusion of a wide spectrum of recommended applications.

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.

Classification of Ambient Particulate Samples Using Cluster Analysis and Disjoint Principal Component Analysis (군집분석법과 분산주성분분석법을 이용한 대기분진시료의 분류)

  • 유상준;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.51-63
    • /
    • 1997
  • Total suspended particulate matters in the ambient air were analyzed for eight chemical elements (Ca, Co, Cu, Fe, Mn, Pb, Si, and Zn) using an x-ray fluorescence spectrometry (XRF) at the Kyung Hee University - Suwon Campus during 1989 to 1994. To use these data as basis for source identification study, membership of each sample was selected to represent one of the well defined sample groups. The data sets consisting of 83 objects and 8 variables were initially separated into two groups, fine (d$_{p}$<3.3 ${\mu}{\textrm}{m}$) and coarse particle groups (d$_{p}$>3.3 ${\mu}{\textrm}{m}$). A hierarchical clustering method was examined to obtain possible member of homogeneous sample classes for each of the two groups by transforming raw data and by applying various distances. A disjoint principal component analysis was then used to define homogeneous sample classes after deleting outliers. Each of five homogeneous sample classes was determined for the fine and the coarse particle group, respectively. The data were properly classified via an application of logarithmic transformation and Euclidean distance concept. After determining homogeneous classes, correlation coefficients among eight chemical variables within all the homogeneous classes for calculated and meteorological variables (temperature. relative humidity, wind speed, wind direction, and precipitation) were examined as well to intensively interpret environmental factors influencing the characteristics of each class for each group. According to our analysis, we found that each class had its own distinct seasonal pattern that was affected most sensitively by wind direction.ion.

  • PDF

Development of Intelligent Job Classification System based on Job Posting on Job Sites (구인구직사이트의 구인정보 기반 지능형 직무분류체계의 구축)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.123-139
    • /
    • 2019
  • The job classification system of major job sites differs from site to site and is different from the job classification system of the 'SQF(Sectoral Qualifications Framework)' proposed by the SW field. Therefore, a new job classification system is needed for SW companies, SW job seekers, and job sites to understand. The purpose of this study is to establish a standard job classification system that reflects market demand by analyzing SQF based on job offer information of major job sites and the NCS(National Competency Standards). For this purpose, the association analysis between occupations of major job sites is conducted and the association rule between SQF and occupation is conducted to derive the association rule between occupations. Using this association rule, we proposed an intelligent job classification system based on data mapping the job classification system of major job sites and SQF and job classification system. First, major job sites are selected to obtain information on the job classification system of the SW market. Then We identify ways to collect job information from each site and collect data through open API. Focusing on the relationship between the data, filtering only the job information posted on each job site at the same time, other job information is deleted. Next, we will map the job classification system between job sites using the association rules derived from the association analysis. We will complete the mapping between these market segments, discuss with the experts, further map the SQF, and finally propose a new job classification system. As a result, more than 30,000 job listings were collected in XML format using open API in 'WORKNET,' 'JOBKOREA,' and 'saramin', which are the main job sites in Korea. After filtering out about 900 job postings simultaneously posted on multiple job sites, 800 association rules were derived by applying the Apriori algorithm, which is a frequent pattern mining. Based on 800 related rules, the job classification system of WORKNET, JOBKOREA, and saramin and the SQF job classification system were mapped and classified into 1st and 4th stages. In the new job taxonomy, the first primary class, IT consulting, computer system, network, and security related job system, consisted of three secondary classifications, five tertiary classifications, and five fourth classifications. The second primary classification, the database and the job system related to system operation, consisted of three secondary classifications, three tertiary classifications, and four fourth classifications. The third primary category, Web Planning, Web Programming, Web Design, and Game, was composed of four secondary classifications, nine tertiary classifications, and two fourth classifications. The last primary classification, job systems related to ICT management, computer and communication engineering technology, consisted of three secondary classifications and six tertiary classifications. In particular, the new job classification system has a relatively flexible stage of classification, unlike other existing classification systems. WORKNET divides jobs into third categories, JOBKOREA divides jobs into second categories, and the subdivided jobs into keywords. saramin divided the job into the second classification, and the subdivided the job into keyword form. The newly proposed standard job classification system accepts some keyword-based jobs, and treats some product names as jobs. In the classification system, not only are jobs suspended in the second classification, but there are also jobs that are subdivided into the fourth classification. This reflected the idea that not all jobs could be broken down into the same steps. We also proposed a combination of rules and experts' opinions from market data collected and conducted associative analysis. Therefore, the newly proposed job classification system can be regarded as a data-based intelligent job classification system that reflects the market demand, unlike the existing job classification system. This study is meaningful in that it suggests a new job classification system that reflects market demand by attempting mapping between occupations based on data through the association analysis between occupations rather than intuition of some experts. However, this study has a limitation in that it cannot fully reflect the market demand that changes over time because the data collection point is temporary. As market demands change over time, including seasonal factors and major corporate public recruitment timings, continuous data monitoring and repeated experiments are needed to achieve more accurate matching. The results of this study can be used to suggest the direction of improvement of SQF in the SW industry in the future, and it is expected to be transferred to other industries with the experience of success in the SW industry.

A Study on Kwansanggam Type (관상감활자고)

  • Kim Sang Ho
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.14
    • /
    • pp.131-148
    • /
    • 1987
  • The Yi-Dynasty published the calendars printed by means of woodblock and typeprinting for the purpose of informing its people of four seasonal changes and appropriate time for farming. The printing types were used to publish the calendars in those days varied depending upon the kinds of the calendars, but all those types are known as only one name: Kwansanggam Type. This is because there have been little studies on the different kinds of printing types. As a result, there are many cases where the libraries make erroneous notes in their catalogues. This study points up the fact that four different kinds of Kwansanggam Type were used depending upon the nature of the calendars. For classification purpose, I call these types Daetongryokja, Naeyongsamsoja, Myongsiryokja, and Chiljongryokja. What has not been revealed in this study can be further explained as the more calendars of those days are found out.

  • PDF

Spatial and Temporal Distribution of Macrobenthos in Intertidal Hard Bottoms in Dokdo Island

  • Kim, Jong-Chun;Park, Kang-Wook;Yoo, Kyong-Dong;Jung, Sung-Yong
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.2
    • /
    • pp.221-227
    • /
    • 2015
  • This study was carried out to measure seasonal changes in the community structure and species composition of marobenthos in the intertidal area of Dokdo. The macrobenthos identified during this study was comprised of 36 species: predominately 25 species of mollusks(69.4 %), 6 species of arthropods(16.7 %), 3 species of echinodermata(8.3 %) and 1 species of cnidaria (5.6 %). The number of marobenthos species ranged from 27 in Spring to 33 in Autumn. In terms of the top 10 dominant species, there were 7 species of mollusks and 3 species of arthropods in the this study. After analyzing the bray-curtis similarity, it was divided into two large groups(A, B). Such group classification matched the SIMPROF(Similarity Profile Analysis) and the one-way ANOSIM(Analysis of similarities) analysis.